Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pytesseract | |
| from PIL import Image | |
| import requests | |
| import re | |
| import traceback | |
| import os | |
| # 配置 Tesseract OCR 的路径(Hugging Face Spaces 自动配置) | |
| pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' | |
| # 使用环境变量获取 Hugging Face API Token | |
| API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2FQwen%2FQwen2.5-Math-72B-Instruct%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END --> | |
| API_TOKEN = os.getenv("HF_API_TOKEN") # 从环境变量获取 Token | |
| HEADERS = {"Authorization": f"Bearer {API_TOKEN}"} | |
| # OCR 识别函数 | |
| def ocr_with_tesseract(image_path): | |
| try: | |
| image = Image.open(image_path).convert("L") | |
| config = "--psm 6" | |
| text = pytesseract.image_to_string(image, config=config) | |
| text = re.sub(r'[^0-9a-zA-Z=+\-*/()., ]', '', text) | |
| return text if text else "OCR 识别失败" | |
| except Exception as e: | |
| return f"OCR 识别错误: {e}\n{traceback.format_exc()}" | |
| # AI 解答生成函数 | |
| def generate_solution_with_qwen(question): | |
| prompt = f"请详细解答以下数学题目:{question}" | |
| payload = {"inputs": prompt} | |
| response = requests.post(API_URL, headers=HEADERS, json=payload) | |
| if response.status_code == 200: | |
| result = response.json() | |
| return result.get('generated_text', "解答生成失败") | |
| else: | |
| return f"API 调用失败,状态码: {response.status_code}, 响应: {response.text}" | |
| # 主处理函数 | |
| def process(image_path): | |
| ocr_result = ocr_with_tesseract(image_path) | |
| ai_solution = generate_solution_with_qwen(ocr_result) | |
| return ocr_result, ai_solution | |
| # 构建 Gradio 应用界面 | |
| def build_interface(): | |
| with gr.Blocks() as interface: | |
| gr.Markdown("# 📚 高级 AI 数学解题助手") | |
| image_input = gr.Image(type="filepath", label="上传数学题目图片") | |
| ocr_output = gr.Textbox(label="OCR 识别结果") | |
| ai_output = gr.Markdown(label="AI 解答") | |
| submit_button = gr.Button("识别并解答") | |
| submit_button.click(fn=process, inputs=image_input, outputs=[ocr_output, ai_output]) | |
| return interface | |
| # 启动 Gradio 应用 | |
| interface = build_interface() | |
| interface.launch() | |