Spaces:
Runtime error
Runtime error
modify od fashion
Browse files- data/dior_show/dior1.jpg +0 -0
- data/dior_show/dior2.jpg +0 -0
- data/dior_show/dior3.jpg +0 -0
- data/dior_show/dior4.jpg +0 -0
- images/fashion_ai.jpg +0 -0
- images/fashion_od.jpg +0 -0
- images/fashion_od2.png +0 -0
- pages/object_detection.py +79 -37
data/dior_show/dior1.jpg
ADDED
|
data/dior_show/dior2.jpg
ADDED
|
data/dior_show/dior3.jpg
ADDED
|
data/dior_show/dior4.jpg
ADDED
|
images/fashion_ai.jpg
ADDED
|
images/fashion_od.jpg
ADDED
|
images/fashion_od2.png
ADDED
|
pages/object_detection.py
CHANGED
|
@@ -4,14 +4,24 @@ import streamlit as st
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import pandas as pd
|
| 6 |
import numpy as np
|
| 7 |
-
import altair as alt
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from PIL import Image
|
| 10 |
from transformers import YolosFeatureExtractor, YolosForObjectDetection
|
| 11 |
from torchvision.transforms import ToTensor, ToPILImage
|
|
|
|
|
|
|
| 12 |
|
| 13 |
st.set_page_config(layout="wide")
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def rgb_to_hex(rgb):
|
| 17 |
"""Converts an RGB tuple to an HTML-style Hex string."""
|
|
@@ -76,7 +86,7 @@ def plot_results(pil_img, prob, boxes):
|
|
| 76 |
|
| 77 |
plt.savefig("results_od.png",
|
| 78 |
bbox_inches ="tight")
|
| 79 |
-
|
| 80 |
st.image("results_od.png")
|
| 81 |
|
| 82 |
return colors_used
|
|
@@ -112,15 +122,23 @@ def visualize_probas(probas, threshold, colors):
|
|
| 112 |
top_label_df["colors"] = colors
|
| 113 |
top_label_df.sort_values(by=["proba"], ascending=False, inplace=True)
|
| 114 |
|
| 115 |
-
st.dataframe(top_label_df.drop(columns=["colors"]))
|
| 116 |
|
| 117 |
mode_func = lambda x: x.mode().iloc[0]
|
| 118 |
top_label_df_agg = top_label_df.groupby("label").agg({"proba":"mean", "colors":mode_func})
|
| 119 |
top_label_df_agg = top_label_df_agg.reset_index().sort_values(by=["proba"], ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
chart = alt.Chart(top_label_df_agg).mark_bar().encode(x="proba", y="label",
|
| 122 |
-
|
| 123 |
-
#st.altair_chart(chart)
|
| 124 |
|
| 125 |
|
| 126 |
|
|
@@ -156,34 +174,38 @@ st.markdown("""Common applications of Object Detection include:
|
|
| 156 |
st.markdown(" ")
|
| 157 |
st.divider()
|
| 158 |
|
| 159 |
-
st.markdown("
|
| 160 |
-
st.
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
#images_dior = [os.path.join("data/dior_show",url) for url in os.listdir("data/dior_show") if url != "results"]
|
| 167 |
-
#st.image(images_dior, width=250, caption=[file for file in os.listdir("data/dior_show") if file != "results"])
|
| 168 |
|
| 169 |
st.markdown(" ")
|
| 170 |
-
#st.markdown("##### Select an image")
|
| 171 |
|
| 172 |
|
| 173 |
############## SELECT AN IMAGE ###############
|
| 174 |
|
| 175 |
-
st.markdown("####
|
| 176 |
-
st.
|
| 177 |
-
|
| 178 |
|
| 179 |
image_ = None
|
| 180 |
select_image_box = st.radio(
|
| 181 |
-
"",
|
| 182 |
["Choose an existing image", "Load your own image"],
|
| 183 |
-
index=None, label_visibility="collapsed")
|
| 184 |
|
| 185 |
if select_image_box == "Choose an existing image":
|
| 186 |
-
fashion_images_path = r"data/
|
| 187 |
list_images = os.listdir(fashion_images_path)
|
| 188 |
image_ = st.selectbox("", list_images, label_visibility="collapsed")
|
| 189 |
|
|
@@ -198,6 +220,8 @@ elif select_image_box == "Load your own image":
|
|
| 198 |
|
| 199 |
st.warning("""**Note**: The model tends to perform better with images of people/clothing items facing forward.
|
| 200 |
Choose this type of image if you want optimal results.""")
|
|
|
|
|
|
|
| 201 |
|
| 202 |
if image_ is not None:
|
| 203 |
st.image(Image.open(image_), width=300)
|
|
@@ -216,7 +240,7 @@ cats = ['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jac
|
|
| 216 |
|
| 217 |
dict_cats = dict(zip(np.arange(len(cats)), cats))
|
| 218 |
|
| 219 |
-
st.markdown("####
|
| 220 |
|
| 221 |
# Select one or more elements to detect
|
| 222 |
container = st.container()
|
|
@@ -239,21 +263,31 @@ st.markdown(" ")
|
|
| 239 |
|
| 240 |
############## SELECT A THRESHOLD ###############
|
| 241 |
|
| 242 |
-
st.markdown("####
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
-
st.
|
| 245 |
-
The threshold helps you decide how confident you want your model to be with its predictions.
|
| 246 |
-
Elements that were identified with a lower probability than the given threshold will be ignored in the final results.""")
|
| 247 |
|
| 248 |
-
threshold = st.slider('**Select a threshold**', min_value=0.0, step=0.05, max_value=1.0, value=0.75, label_visibility="collapsed")
|
| 249 |
-
# min_value=0.000000, step=0.000001, max_value=0.0005, value=0.0000045, format="%f"
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
|
|
|
| 253 |
|
| 254 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
|
|
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
st.markdown(" ")
|
| 258 |
|
| 259 |
|
|
@@ -269,29 +303,37 @@ if run_model:
|
|
| 269 |
image = fix_channels(ToTensor()(image))
|
| 270 |
|
| 271 |
## LOAD OBJECT DETECTION MODEL
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
model =
|
|
|
|
|
|
|
| 275 |
|
| 276 |
# RUN MODEL ON IMAGE
|
| 277 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 278 |
outputs = model(**inputs)
|
| 279 |
probas, keep = return_probas(outputs, threshold)
|
| 280 |
|
|
|
|
|
|
|
| 281 |
# PLOT BOUNDING BOX AND BARS/PROBA
|
| 282 |
col1, col2 = st.columns(2)
|
| 283 |
with col1:
|
| 284 |
-
st.markdown("
|
| 285 |
bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
|
| 286 |
colors_used = plot_results(image, probas[keep], bboxes_scaled)
|
| 287 |
|
| 288 |
with col2:
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
-
st.info("Done")
|
| 292 |
|
| 293 |
else:
|
| 294 |
-
st.
|
| 295 |
|
| 296 |
|
| 297 |
|
|
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import pandas as pd
|
| 6 |
import numpy as np
|
| 7 |
+
#import altair as alt
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
|
| 10 |
|
| 11 |
from PIL import Image
|
| 12 |
from transformers import YolosFeatureExtractor, YolosForObjectDetection
|
| 13 |
from torchvision.transforms import ToTensor, ToPILImage
|
| 14 |
+
#from utils import load_model_huggingface
|
| 15 |
+
|
| 16 |
|
| 17 |
st.set_page_config(layout="wide")
|
| 18 |
|
| 19 |
+
@st.cache_data(ttl=3600, show_spinner=False)
|
| 20 |
+
def load_model(feature_extractor_url, model_url):
|
| 21 |
+
feature_extractor_ = YolosFeatureExtractor.from_pretrained(feature_extractor_url)
|
| 22 |
+
model_ = YolosForObjectDetection.from_pretrained(model_url)
|
| 23 |
+
return feature_extractor_, model_
|
| 24 |
+
|
| 25 |
|
| 26 |
def rgb_to_hex(rgb):
|
| 27 |
"""Converts an RGB tuple to an HTML-style Hex string."""
|
|
|
|
| 86 |
|
| 87 |
plt.savefig("results_od.png",
|
| 88 |
bbox_inches ="tight")
|
| 89 |
+
plt.show()
|
| 90 |
st.image("results_od.png")
|
| 91 |
|
| 92 |
return colors_used
|
|
|
|
| 122 |
top_label_df["colors"] = colors
|
| 123 |
top_label_df.sort_values(by=["proba"], ascending=False, inplace=True)
|
| 124 |
|
| 125 |
+
#st.dataframe(top_label_df.drop(columns=["colors"]))
|
| 126 |
|
| 127 |
mode_func = lambda x: x.mode().iloc[0]
|
| 128 |
top_label_df_agg = top_label_df.groupby("label").agg({"proba":"mean", "colors":mode_func})
|
| 129 |
top_label_df_agg = top_label_df_agg.reset_index().sort_values(by=["proba"], ascending=False)
|
| 130 |
+
top_label_df_agg.columns = ["Item","Score","Colors"]
|
| 131 |
+
|
| 132 |
+
color_map = dict(zip(top_label_df_agg["Item"].to_list(),
|
| 133 |
+
top_label_df_agg["Colors"].to_list()))
|
| 134 |
+
|
| 135 |
+
fig = px.bar(top_label_df_agg, y='Item', x='Score',
|
| 136 |
+
color="Item", title="Probability scores")
|
| 137 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 138 |
|
| 139 |
+
# chart = alt.Chart(top_label_df_agg).mark_bar().encode(x="proba", y="label",
|
| 140 |
+
# color=alt.Color('colors:N', scale=None)).interactive()
|
| 141 |
+
# st.altair_chart(chart)
|
| 142 |
|
| 143 |
|
| 144 |
|
|
|
|
| 174 |
st.markdown(" ")
|
| 175 |
st.divider()
|
| 176 |
|
| 177 |
+
st.markdown("## Fashion Object Detection 👗")
|
| 178 |
+
# st.info("""This use case showcases the application of **Object detection** to detect clothing items/features on images. <br>
|
| 179 |
+
# The images used were gathered from Dior's""")
|
| 180 |
+
st.info("""In this use case, we are going to identify and locate different articles of clothings, as well as finer details such as a collar or pocket using an object detection AI model.
|
| 181 |
+
The images used were taken from **Dior's 2020 Fall Women Fashion Show**.""")
|
| 182 |
+
|
| 183 |
+
st.markdown(" ")
|
| 184 |
|
| 185 |
+
images_dior = [os.path.join("data/dior_show",url) for url in os.listdir("data/dior_show") if url != "results"]
|
| 186 |
+
columns_img = st.columns(4)
|
| 187 |
+
for img, col in zip(images_dior,columns_img):
|
| 188 |
+
with col:
|
| 189 |
+
st.image(img)
|
| 190 |
|
|
|
|
|
|
|
| 191 |
|
| 192 |
st.markdown(" ")
|
|
|
|
| 193 |
|
| 194 |
|
| 195 |
############## SELECT AN IMAGE ###############
|
| 196 |
|
| 197 |
+
st.markdown("#### Select an image 🖼️")
|
| 198 |
+
#st.markdown("""**Select an image that you wish to run the Object Detection model on.**""")
|
| 199 |
+
|
| 200 |
|
| 201 |
image_ = None
|
| 202 |
select_image_box = st.radio(
|
| 203 |
+
"**Select the image you wish to run the model on**",
|
| 204 |
["Choose an existing image", "Load your own image"],
|
| 205 |
+
index=None,)# #label_visibility="collapsed")
|
| 206 |
|
| 207 |
if select_image_box == "Choose an existing image":
|
| 208 |
+
fashion_images_path = r"data/dior_show"
|
| 209 |
list_images = os.listdir(fashion_images_path)
|
| 210 |
image_ = st.selectbox("", list_images, label_visibility="collapsed")
|
| 211 |
|
|
|
|
| 220 |
|
| 221 |
st.warning("""**Note**: The model tends to perform better with images of people/clothing items facing forward.
|
| 222 |
Choose this type of image if you want optimal results.""")
|
| 223 |
+
st.warning("""**Note:** The model was trained to detect clothing items on a single person.
|
| 224 |
+
If your image contains more than one person, the model won't detect the items of the other persons.""")
|
| 225 |
|
| 226 |
if image_ is not None:
|
| 227 |
st.image(Image.open(image_), width=300)
|
|
|
|
| 240 |
|
| 241 |
dict_cats = dict(zip(np.arange(len(cats)), cats))
|
| 242 |
|
| 243 |
+
st.markdown("#### Choose the elements you want to detect 👉")
|
| 244 |
|
| 245 |
# Select one or more elements to detect
|
| 246 |
container = st.container()
|
|
|
|
| 263 |
|
| 264 |
############## SELECT A THRESHOLD ###############
|
| 265 |
|
| 266 |
+
st.markdown("#### Define a threshold for predictions 🔎")
|
| 267 |
+
st.markdown("""Object detection models assign to each element detected a **probability score**. <br>
|
| 268 |
+
This score represents the model's belief in the accuracy of its prediction for a specific object.
|
| 269 |
+
""", unsafe_allow_html=True)
|
| 270 |
|
| 271 |
+
st.warning("**Note:** Objects that are assigned a lower score than the chosen threshold will be ignored in the final results.")
|
|
|
|
|
|
|
| 272 |
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
_, col, _ = st.columns([0.2,0.6,0.2])
|
| 275 |
+
with col:
|
| 276 |
+
st.image("images/probability_od.png", caption="Example of object detection with probability scores")
|
| 277 |
|
| 278 |
+
st.markdown(" ")
|
| 279 |
+
|
| 280 |
+
st.markdown("**Select a threshold** ")
|
| 281 |
+
|
| 282 |
+
# st.warning("""**Note**: The threshold helps you decide how confident you want your model to be with its predictions.
|
| 283 |
+
# Elements that are identified with a lower probability than the given threshold will be ignored in the final results.""")
|
| 284 |
|
| 285 |
+
threshold = st.slider('**Select a threshold**', min_value=0.5, step=0.05, max_value=1.0, value=0.75, label_visibility="collapsed")
|
| 286 |
|
| 287 |
+
if threshold < 0.6:
|
| 288 |
+
st.error("""**Warning**: Selecting a low threshold (below 0.6) could lead the model to make errors and detect too many objects.""")
|
| 289 |
+
|
| 290 |
+
st.write("You've selected a threshold at", threshold)
|
| 291 |
st.markdown(" ")
|
| 292 |
|
| 293 |
|
|
|
|
| 303 |
image = fix_channels(ToTensor()(image))
|
| 304 |
|
| 305 |
## LOAD OBJECT DETECTION MODEL
|
| 306 |
+
FEATURE_EXTRACTOR_PATH = "hustvl/yolos-small"
|
| 307 |
+
MODEL_PATH = "valentinafeve/yolos-fashionpedia"
|
| 308 |
+
feature_extractor, model = load_model(FEATURE_EXTRACTOR_PATH, MODEL_PATH)
|
| 309 |
+
# feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small')
|
| 310 |
+
# model = YolosForObjectDetection.from_pretrained(MODEL)
|
| 311 |
|
| 312 |
# RUN MODEL ON IMAGE
|
| 313 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 314 |
outputs = model(**inputs)
|
| 315 |
probas, keep = return_probas(outputs, threshold)
|
| 316 |
|
| 317 |
+
st.markdown("#### See the results ☑️")
|
| 318 |
+
|
| 319 |
# PLOT BOUNDING BOX AND BARS/PROBA
|
| 320 |
col1, col2 = st.columns(2)
|
| 321 |
with col1:
|
| 322 |
+
#st.markdown("**Bounding box results**")
|
| 323 |
bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
|
| 324 |
colors_used = plot_results(image, probas[keep], bboxes_scaled)
|
| 325 |
|
| 326 |
with col2:
|
| 327 |
+
#st.markdown("**Probability scores**")
|
| 328 |
+
if not any(keep.tolist()):
|
| 329 |
+
st.error("""No objects were detected on the image.
|
| 330 |
+
Decrease your threshold or choose differents items to detect.""")
|
| 331 |
+
else:
|
| 332 |
+
visualize_probas(probas, threshold, colors_used)
|
| 333 |
|
|
|
|
| 334 |
|
| 335 |
else:
|
| 336 |
+
st.error("You must select an **image**, **elements to detect** and a **threshold** to run the model !")
|
| 337 |
|
| 338 |
|
| 339 |
|