File size: 7,039 Bytes
7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 97c70d3 60f6b78 fc3c9e4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 97c70d3 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 97c70d3 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 3d1192b 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 fc3c9e4 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 7fa10a4 60f6b78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
# ์ฌ์ฉํ ํ์ดํ๋ผ์ธ๋ค์ ๋ชจ๋ import ํฉ๋๋ค.
from diffusers import DiffusionPipeline
# 'pipelines' ํด๋๊ฐ ์๋ค๊ณ ๊ฐ์ ํฉ๋๋ค.
from pipelines.pipeline_tag_stablediffusion import StableDiffusionTangentialDecomposedPipeline
from pipelines.pipeline_tag_stablediffusion3 import StableDiffusion3TangentialDecomposedPipeline
from pipelines.pipeline_tag_stablediffusionXL import StableDiffusionXLTangentialDecomposedPipeline
# --- ์ค์ ---
MODEL_MAP = {
"SD 1.5": "runwayml/stable-diffusion-v1-5",
"SD 2.1": "stabilityai/stable-diffusion-2-1",
"SDXL": "stabilityai/stable-diffusion-xl-base-1.0",
"SD 3": "stabilityai/stable-diffusion-3-medium-diffusers",
}
RESOLUTION_MAP = { "SD 1.5": 512, "SD 2.1": 768, "SDXL": 1024, "SD 3": 1024 }
SEED_MAP = { "SD 1.5": 850728, "SD 2.1": 944905, "SDXL": 450040818, "SD 3": 282386105 }
TAG_SCALE_MAP = {
"SD 1.5": 1.15, # ๊ธฐ๋ณธ๊ฐ
"SD 2.1": 1.15, # ๊ธฐ๋ณธ๊ฐ
"SDXL": 1.20,
"SD 3": 1.08
}
PIPELINE_MAP = {
"SD 1.5": StableDiffusionTangentialDecomposedPipeline,
"SD 2.1": StableDiffusionTangentialDecomposedPipeline,
"SDXL": StableDiffusionXLTangentialDecomposedPipeline,
"SD 3": StableDiffusion3TangentialDecomposedPipeline,
}
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe = None
current_model_id = None
MAX_SEED = np.iinfo(np.int32).max
# --- ํจ์ ---
def load_pipeline(model_name, progress):
global pipe, current_model_id
model_id = MODEL_MAP[model_name]
pipeline_class = PIPELINE_MAP[model_name]
progress(0, desc=f"Loading model: {model_id} with {pipeline_class.__name__}...")
if model_name == "SD 3":
pipe = pipeline_class.from_pretrained(model_id, torch_dtype=torch_dtype,
text_encoder_3=None,
tokenizer_3=None,)
else:
pipe = pipeline_class.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
current_model_id = model_id
progress(1)
def update_model_defaults(model_name):
"""๋ชจ๋ธ ์ ํ์ ๋ฐ๋ผ ํด์๋, ์๋, ๋๋ค ์๋ ์ฒดํฌ๋ฐ์ค, TAG Scale์ ์
๋ฐ์ดํธํฉ๋๋ค."""
res = RESOLUTION_MAP[model_name]
seed_val = SEED_MAP[model_name]
tag_scale_val = TAG_SCALE_MAP[model_name]
return (
gr.update(value=res),
gr.update(value=res),
gr.update(value=seed_val),
gr.update(value=False), # 'Randomize seed' ์ฒดํฌ ํด์
gr.update(value=tag_scale_val), # TAG Scale ์
๋ฐ์ดํธ
)
@spaces.GPU
def infer(
model_name,
seed,
randomize_seed,
width,
height,
guidance_scale, # ์ฌ์ฉ์ ์ง์ TAG Scale
num_inference_steps,
guidance_start_timestep,
guidance_end_timestep,
progress=gr.Progress(track_tqdm=True),
):
global pipe, current_model_id
model_id = MODEL_MAP[model_name]
if model_id != current_model_id:
gr.Info(f"Changing model to {model_name}. Please wait...")
load_pipeline(model_name, progress)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator_custom = torch.Generator(device=device).manual_seed(int(seed))
generator_fixed = torch.Generator(device=device).manual_seed(int(seed))
unconditional_prompt = ""
# ์ฒซ ๋ฒ์งธ ์ด๋ฏธ์ง (์ฌ์ฉ์ ์ง์ TAG Scale) ์์ฑ
image_custom_scale = pipe(
prompt=unconditional_prompt, guidance_scale=0.,
num_inference_steps=num_inference_steps, width=width, height=height, generator=generator_custom,
sta_tpd=guidance_start_timestep, end_tpd=guidance_end_timestep,
t_guidance_scale=guidance_scale
).images[0]
fixed_tag_value = 1.0
image_fixed_scale = pipe(
prompt=unconditional_prompt, guidance_scale=0.,
num_inference_steps=num_inference_steps, width=width, height=height, generator=generator_fixed,
sta_tpd=guidance_start_timestep, end_tpd=guidance_end_timestep,
t_guidance_scale=fixed_tag_value
).images[0]
return [image_fixed_scale, image_custom_scale], seed
# --- UI ๊ตฌ์ฑ (Gradio) ---
css = """
#col-container { margin: 0 auto; max-width: 720px; }
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Tangential Amplifying Guidance Demo")
model_selector = gr.Dropdown(
label="Select Model", choices=list(MODEL_MAP.keys()), value="SDXL"
)
with gr.Row():
prompt = gr.Text(
label="Prompt (Disabled)", show_label=True, max_lines=1,
placeholder="Unconditional generation mode. This input is ignored.",
container=True, interactive=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
# --- 2. gr.ImageSlider ์ปดํฌ๋ํธ๋ก ๋ณ๊ฒฝ ---
result_slider = gr.ImageSlider(
label="Result Comparison (Fixed Scale vs. Your Scale)",
show_label=True
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=SEED_MAP["SDXL"]
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Row():
width = gr.Slider(
label="Width", minimum=256, maximum=1024, step=64, value=RESOLUTION_MAP["SDXL"]
)
height = gr.Slider(
label="Height", minimum=256, maximum=1024, step=64, value=RESOLUTION_MAP["SDXL"]
)
with gr.Row():
guidance_scale = gr.Slider(
label="TAG Scale", minimum=1.0, maximum=1.3, step=0.01, value=TAG_SCALE_MAP["SDXL"],
)
num_inference_steps = gr.Slider(
label="Inference Steps", minimum=20, maximum=50, step=1, value=50
)
with gr.Row():
guidance_start_timestep = gr.Slider(
label="Guidance Start Timestep", minimum=0, maximum=1000, step=1, value=999
)
guidance_end_timestep = gr.Slider(
label="Guidance End Timestep", minimum=0, maximum=1000, step=1, value=0
)
# --- ์ด๋ฒคํธ ๋ฆฌ์ค๋ ---
model_selector.change(
fn=update_model_defaults,
inputs=[model_selector],
outputs=[width, height, seed, randomize_seed, guidance_scale],
)
# --- 3. outputs๋ฅผ ImageSlider ์ปดํฌ๋ํธ๋ก ์ง์ ---
run_button.click(
fn=infer,
inputs=[
model_selector, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps,
guidance_start_timestep, guidance_end_timestep,
],
outputs=[result_slider, seed],
)
if __name__ == "__main__":
demo.launch(debug=True) |