Commit
·
a8bf136
1
Parent(s):
f8e8c9b
added more functionality
Browse files
app.py
CHANGED
|
@@ -3,12 +3,12 @@ import gradio as gr
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
-
from smolagents import CodeAgent, OpenAIServerModel, DuckDuckGoSearchTool, WikipediaSearchTool, HfApiModel, GoogleSearchTool
|
| 7 |
from dotenv import find_dotenv, load_dotenv
|
| 8 |
-
from tools import WikipediaSearch, ExcelReader, download_files, get_images, FileReader, AudioTransciber, YouTubeTranscipt, YouTubeVideoUnderstanding
|
| 9 |
from pathlib import Path
|
| 10 |
from PIL import Image
|
| 11 |
-
|
| 12 |
# (Keep Constants as is)
|
| 13 |
# --- Constants ---
|
| 14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
@@ -16,18 +16,24 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
| 16 |
# --- Basic Agent Definition ---
|
| 17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 18 |
class BasicAgent:
|
| 19 |
-
def __init__(self):
|
| 20 |
load_dotenv(find_dotenv())
|
| 21 |
os.environ["SERPER_API_KEY"] = os.getenv('SERPER_API_KEY')
|
| 22 |
-
model = OpenAIServerModel(model_id="gpt-4o",
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
#model=HfApiModel(api_key=os.getenv('HUGGING_FACE_API_KEY'))
|
| 25 |
# Instantiate the agent
|
| 26 |
self.agent = CodeAgent(
|
| 27 |
tools=[
|
| 28 |
GoogleSearchTool(provider="serper"),
|
|
|
|
| 29 |
#DuckDuckGoSearchTool(),
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
YouTubeVideoUnderstanding()],
|
| 32 |
model=model,
|
| 33 |
add_base_tools=True,
|
|
@@ -43,7 +49,8 @@ class BasicAgent:
|
|
| 43 |
digits in plain text unless specified otherwise. Never include currency symbols in the response.
|
| 44 |
If you are asked for a comma separated list, apply the above rules depending of whether the element
|
| 45 |
to be put in the list is a number or a string. For question that contain phrases like `what is the number` or
|
| 46 |
-
`what is the highest number` return just the number, e.g., 2.
|
|
|
|
| 47 |
"""
|
| 48 |
self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + SYSTEM_PROMPT
|
| 49 |
def __call__(self, question: str) -> str:
|
|
@@ -91,7 +98,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 91 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 92 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 93 |
try:
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
except Exception as e:
|
| 96 |
print(f"Error instantiating agent: {e}")
|
| 97 |
return f"Error initializing agent: {e}", None
|
|
@@ -105,35 +116,37 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 105 |
results_log = []
|
| 106 |
answers_payload = []
|
| 107 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 108 |
-
#questions_data = [i for i in questions_data if i['task_id'] == '
|
| 109 |
images = []
|
| 110 |
#added limit for testing
|
| 111 |
-
for item in questions_data:
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
| 131 |
|
| 132 |
if not answers_payload:
|
| 133 |
print("Agent did not produce any answers to submit.")
|
| 134 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 135 |
|
| 136 |
-
#
|
| 137 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 138 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 139 |
print(status_update)
|
|
@@ -235,7 +248,7 @@ if __name__ == "__main__":
|
|
| 235 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 236 |
|
| 237 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 238 |
-
demo.launch(debug=True, share=
|
| 239 |
|
| 240 |
if __name__ == "__main__":
|
| 241 |
run_and_submit_all()
|
|
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
+
from smolagents import CodeAgent, OpenAIServerModel, DuckDuckGoSearchTool, WikipediaSearchTool, HfApiModel, GoogleSearchTool, LiteLLMModel
|
| 7 |
from dotenv import find_dotenv, load_dotenv
|
| 8 |
+
from tools import WikipediaSearch, ExcelReader, ChessSolver, download_files, get_images, FileReader, AudioTransciber, YouTubeTranscipt, YouTubeVideoUnderstanding, VegetableFruitClassification
|
| 9 |
from pathlib import Path
|
| 10 |
from PIL import Image
|
| 11 |
+
import time
|
| 12 |
# (Keep Constants as is)
|
| 13 |
# --- Constants ---
|
| 14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
| 16 |
# --- Basic Agent Definition ---
|
| 17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 18 |
class BasicAgent:
|
| 19 |
+
def __init__(self, model):
|
| 20 |
load_dotenv(find_dotenv())
|
| 21 |
os.environ["SERPER_API_KEY"] = os.getenv('SERPER_API_KEY')
|
| 22 |
+
# model = OpenAIServerModel(model_id="gpt-4o",
|
| 23 |
+
# api_key=os.getenv("OPEN_AI_KEY"))
|
| 24 |
+
# model = LiteLLMModel(model_id="gemini/gemini-2.0-flash",
|
| 25 |
+
# api_key=os.getenv("GEMINI_API_KEY"))
|
| 26 |
#model=HfApiModel(api_key=os.getenv('HUGGING_FACE_API_KEY'))
|
| 27 |
# Instantiate the agent
|
| 28 |
self.agent = CodeAgent(
|
| 29 |
tools=[
|
| 30 |
GoogleSearchTool(provider="serper"),
|
| 31 |
+
ChessSolver(),
|
| 32 |
#DuckDuckGoSearchTool(),
|
| 33 |
+
VegetableFruitClassification(),
|
| 34 |
+
WikipediaSearch(),
|
| 35 |
+
ExcelReader(), FileReader(),
|
| 36 |
+
AudioTransciber(), YouTubeTranscipt(),
|
| 37 |
YouTubeVideoUnderstanding()],
|
| 38 |
model=model,
|
| 39 |
add_base_tools=True,
|
|
|
|
| 49 |
digits in plain text unless specified otherwise. Never include currency symbols in the response.
|
| 50 |
If you are asked for a comma separated list, apply the above rules depending of whether the element
|
| 51 |
to be put in the list is a number or a string. For question that contain phrases like `what is the number` or
|
| 52 |
+
`what is the highest number` return just the number, e.g., 2. For questions around currency,
|
| 53 |
+
include just the number, not the currency sign.
|
| 54 |
"""
|
| 55 |
self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + SYSTEM_PROMPT
|
| 56 |
def __call__(self, question: str) -> str:
|
|
|
|
| 98 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 99 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 100 |
try:
|
| 101 |
+
model = LiteLLMModel(model_id= "gemini/gemini-2.0-flash",
|
| 102 |
+
api_key=os.getenv("GEMINI_API_KEY"))
|
| 103 |
+
# model = OpenAIServerModel(model_id="gpt-4o",
|
| 104 |
+
# api_key=os.getenv("OPEN_AI_KEY"))
|
| 105 |
+
agent = BasicAgent(model=model)
|
| 106 |
except Exception as e:
|
| 107 |
print(f"Error instantiating agent: {e}")
|
| 108 |
return f"Error initializing agent: {e}", None
|
|
|
|
| 116 |
results_log = []
|
| 117 |
answers_payload = []
|
| 118 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 119 |
+
#questions_data = [i for i in questions_data if i['task_id'] == '5a0c1adf-205e-4841-a666-7c3ef95def9d']
|
| 120 |
images = []
|
| 121 |
#added limit for testing
|
| 122 |
+
for req_num, item in enumerate(questions_data):
|
| 123 |
+
if req_num % 2 == 0:
|
| 124 |
+
time.sleep(30)
|
| 125 |
+
else:
|
| 126 |
+
task_id = item.get("task_id")
|
| 127 |
+
question_text = item.get("question") + ' You can use wikipedia. Do not change original names or omit name parts.'
|
| 128 |
+
file_name = item.get('file_name')
|
| 129 |
+
if file_name:
|
| 130 |
+
file_path = download_files(task_id, file_name)
|
| 131 |
+
file_format = file_name.split('.')[-1]
|
| 132 |
+
question_text = question_text + f"This question has an associated file at path: {file_path}. The file is in the {file_format} format"
|
| 133 |
+
if not task_id or question_text is None:
|
| 134 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 135 |
+
continue
|
| 136 |
+
try:
|
| 137 |
+
submitted_answer = agent(question_text)
|
| 138 |
+
print(submitted_answer)
|
| 139 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 140 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 143 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 144 |
|
| 145 |
if not answers_payload:
|
| 146 |
print("Agent did not produce any answers to submit.")
|
| 147 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 148 |
|
| 149 |
+
#4. Prepare Submission
|
| 150 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 151 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 152 |
print(status_update)
|
|
|
|
| 248 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 249 |
|
| 250 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 251 |
+
demo.launch(debug=True, share=True)
|
| 252 |
|
| 253 |
if __name__ == "__main__":
|
| 254 |
run_and_submit_all()
|
chess.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import json
|
| 3 |
+
import base64
|
| 4 |
+
|
| 5 |
+
def get_base64(file_path: str) -> str:
|
| 6 |
+
with open(file_path, "rb") as f:
|
| 7 |
+
base64_data = base64.b64encode(f.read()).decode('utf-8')
|
| 8 |
+
return base64_data
|
| 9 |
+
|
| 10 |
+
def fen_notation(image_path:str, current_player:str)->str:
|
| 11 |
+
chessvisionai_url = "http://app.chessvision.ai/predict"
|
| 12 |
+
base64_image = get_base64(image_path)
|
| 13 |
+
base64_image_encoded = f"data:image/png;base64,{base64_image}"
|
| 14 |
+
current_player = 'black'
|
| 15 |
+
if current_player not in ["black", "white"]:
|
| 16 |
+
raise ValueError("current_player must be 'black' or 'white'")
|
| 17 |
+
payload = {
|
| 18 |
+
"board_orientation": "predict",
|
| 19 |
+
"cropped": False,
|
| 20 |
+
"current_player": current_player,
|
| 21 |
+
"image": base64_image_encoded,
|
| 22 |
+
"predict_turn": False
|
| 23 |
+
}
|
| 24 |
+
response = requests.post(chessvisionai_url
|
| 25 |
+
, json=payload)
|
| 26 |
+
if response.status_code == 200:
|
| 27 |
+
fen_notation = response.json()['result'].replace('_', ' ')
|
| 28 |
+
return fen_notation
|
| 29 |
+
else:
|
| 30 |
+
raise Exception('Error retrieving fen' + response.status_code + response.text)
|
| 31 |
+
|
| 32 |
+
def chess_analysis(fen_notation:str)->str:
|
| 33 |
+
chess_api = "https://chess-api.com/v1"
|
| 34 |
+
url = chess_api
|
| 35 |
+
payload = {
|
| 36 |
+
"fen": fen_notation
|
| 37 |
+
}
|
| 38 |
+
chess_response = requests.post(url, json=payload)
|
| 39 |
+
if chess_response.status_code == 200:
|
| 40 |
+
best_move = chess_response.json().get('san')
|
| 41 |
+
return best_move
|
| 42 |
+
else:
|
| 43 |
+
raise Exception(f'Error occurred {chess_response.status_code} {chess_response.text}')
|
| 44 |
+
|
tools.py
CHANGED
|
@@ -15,7 +15,7 @@ from openai import OpenAI
|
|
| 15 |
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader
|
| 16 |
from google import genai
|
| 17 |
from google.genai import types
|
| 18 |
-
|
| 19 |
class WikipediaSearch(Tool):
|
| 20 |
name = "wikipedia_search"
|
| 21 |
description = "Fetches wikipedia pages."
|
|
@@ -143,7 +143,7 @@ class YouTubeVideoUnderstanding(Tool):
|
|
| 143 |
load_dotenv(find_dotenv())
|
| 144 |
client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
|
| 145 |
response = client.models.generate_content(
|
| 146 |
-
model='models/gemini-2.
|
| 147 |
contents=types.Content(
|
| 148 |
parts=[
|
| 149 |
types.Part(
|
|
@@ -153,4 +153,54 @@ class YouTubeVideoUnderstanding(Tool):
|
|
| 153 |
]
|
| 154 |
)
|
| 155 |
)
|
| 156 |
-
return response.text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader
|
| 16 |
from google import genai
|
| 17 |
from google.genai import types
|
| 18 |
+
import chess
|
| 19 |
class WikipediaSearch(Tool):
|
| 20 |
name = "wikipedia_search"
|
| 21 |
description = "Fetches wikipedia pages."
|
|
|
|
| 143 |
load_dotenv(find_dotenv())
|
| 144 |
client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
|
| 145 |
response = client.models.generate_content(
|
| 146 |
+
model='models/gemini-2.0-flash',
|
| 147 |
contents=types.Content(
|
| 148 |
parts=[
|
| 149 |
types.Part(
|
|
|
|
| 153 |
]
|
| 154 |
)
|
| 155 |
)
|
| 156 |
+
return response.text
|
| 157 |
+
|
| 158 |
+
class VegetableFruitClassification(Tool):
|
| 159 |
+
name = 'vegetable_fruit_classificaiton'
|
| 160 |
+
description = "a tool that can help classify fruits and vegetables"
|
| 161 |
+
inputs = {
|
| 162 |
+
"prompt": {
|
| 163 |
+
"type": "string",
|
| 164 |
+
"description": "user prompt about fruits or vegetables"
|
| 165 |
+
|
| 166 |
+
}
|
| 167 |
+
}
|
| 168 |
+
output_type = "string"
|
| 169 |
+
|
| 170 |
+
def forward(self, prompt:str)->str:
|
| 171 |
+
load_dotenv(find_dotenv())
|
| 172 |
+
client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
|
| 173 |
+
additional_context = """
|
| 174 |
+
The botanical distinction between fruits and vegetables is anatomical of the plant in question.
|
| 175 |
+
For example, a tomato has seeds, which would result in reproduction. Rhubarb is the stalk of a plant, and has no means of proliferation after consumption.
|
| 176 |
+
A tomato is a botanical fruit and rhubarb is botanically a vegetable. """
|
| 177 |
+
extended_prompt = prompt + additional_context
|
| 178 |
+
response = client.models.generate_content(
|
| 179 |
+
model='models/gemini-2.5-flash-preview-05-20',
|
| 180 |
+
contents=types.Content(
|
| 181 |
+
parts=[
|
| 182 |
+
types.Part(text=extended_prompt)
|
| 183 |
+
]
|
| 184 |
+
)
|
| 185 |
+
)
|
| 186 |
+
return response.text
|
| 187 |
+
|
| 188 |
+
class ChessSolver(Tool):
|
| 189 |
+
name = "chess_analysis_tool"
|
| 190 |
+
description = "analyzes the chess board to determine the best next move."
|
| 191 |
+
inputs = {
|
| 192 |
+
"image_path": {
|
| 193 |
+
"type": "string",
|
| 194 |
+
"description": "path to the image showing a chess board."
|
| 195 |
+
},
|
| 196 |
+
"current_player":{
|
| 197 |
+
"type": "string",
|
| 198 |
+
"description": "player whose turn it is. Acceptable inputs are 'black' or 'white'"
|
| 199 |
+
},
|
| 200 |
+
}
|
| 201 |
+
output_type = "string"
|
| 202 |
+
|
| 203 |
+
def forward(self, image_path:str, current_player:str)->str:
|
| 204 |
+
fen = chess.fen_notation(image_path, current_player)
|
| 205 |
+
best_move = chess.chess_analysis(fen)
|
| 206 |
+
return best_move
|