jiuface commited on
Commit
5ecfc10
·
verified ·
1 Parent(s): 2e72c82

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -62
app.py CHANGED
@@ -1,5 +1,10 @@
 
1
  import torch
2
- from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
 
 
 
 
3
  from diffusers.utils import export_to_video
4
  from transformers import CLIPVisionModel
5
  import gradio as gr
@@ -19,24 +24,22 @@ import boto3
19
  from io import BytesIO
20
  from diffusers.utils import load_image
21
 
 
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
25
- LORA_REPO_ID = "Kijai/WanVideo_comfy"
26
- LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
27
-
28
- image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
29
- vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
30
- pipe = WanImageToVideoPipeline.from_pretrained(
31
- MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
32
- )
33
- pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
34
- pipe.to("cuda")
35
-
36
- causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
37
- pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
38
- pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
39
- pipe.fuse_lora()
40
 
41
  MOD_VALUE = 32
42
  DEFAULT_H_SLIDER_VALUE = 512
@@ -117,46 +120,6 @@ def upload_video_to_r2(video_file, account_id, access_key, secret_key, bucket_na
117
 
118
  return video_remote_path
119
 
120
- def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
121
- if uploaded_pil_image is None:
122
- return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
123
- try:
124
- new_h, new_w = _calculate_new_dimensions_wan(
125
- uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
126
- SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
127
- DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
128
- )
129
- return gr.update(value=new_h), gr.update(value=new_w)
130
- except Exception as e:
131
- gr.Warning("Error attempting to calculate new dimensions")
132
- return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
133
-
134
- def get_duration(
135
- image_url,
136
- prompt,
137
- height,
138
- width,
139
- negative_prompt,
140
- duration_seconds,
141
- guidance_scale,
142
- steps,
143
- seed,
144
- randomize_seed,
145
- upload_to_r2,
146
- account_id,
147
- access_key,
148
- secret_key,
149
- bucket,
150
- progress=gr.Progress(track_tqdm=True)
151
- ):
152
- # 保持逻辑不变
153
- if steps > 4 and duration_seconds > 2:
154
- return 90
155
- elif steps > 4 or duration_seconds > 2:
156
- return 75
157
- else:
158
- return 60
159
-
160
 
161
  @spaces.GPU(duration=120)
162
  def generate_video(image_url,
@@ -191,9 +154,14 @@ def generate_video(image_url,
191
 
192
  with torch.inference_mode():
193
  output_frames_list = pipe(
194
- image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
195
- height=target_h, width=target_w, num_frames=num_frames,
196
- guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
 
 
 
 
 
197
  generator=torch.Generator(device="cuda").manual_seed(current_seed)
198
  ).frames[0]
199
 
@@ -209,8 +177,7 @@ def generate_video(image_url,
209
 
210
 
211
  with gr.Blocks() as demo:
212
- gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
213
- gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
214
  with gr.Row():
215
  with gr.Column():
216
  image_url_input = gr.Textbox(
 
1
+ import os
2
  import torch
3
+
4
+ from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
5
+ from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
6
+ from diffusers.utils.export_utils import export_to_video
7
+
8
  from diffusers.utils import export_to_video
9
  from transformers import CLIPVisionModel
10
  import gradio as gr
 
24
  from io import BytesIO
25
  from diffusers.utils import load_image
26
 
27
+ MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
28
 
29
+ pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
30
+ transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
31
+ subfolder='transformer',
32
+ torch_dtype=torch.bfloat16,
33
+ device_map='cuda',
34
+ ),
35
+ transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
36
+ subfolder='transformer_2',
37
+ torch_dtype=torch.bfloat16,
38
+ device_map='cuda',
39
+ ),
40
+ torch_dtype=torch.bfloat16,
41
+ ).to('cuda')
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
  MOD_VALUE = 32
45
  DEFAULT_H_SLIDER_VALUE = 512
 
120
 
121
  return video_remote_path
122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  @spaces.GPU(duration=120)
125
  def generate_video(image_url,
 
154
 
155
  with torch.inference_mode():
156
  output_frames_list = pipe(
157
+ image=resized_image,
158
+ prompt=prompt,
159
+ negative_prompt=negative_prompt,
160
+ height=target_h,
161
+ width=target_w,
162
+ num_frames=num_frames,
163
+ guidance_scale=float(guidance_scale),
164
+ num_inference_steps=int(steps),
165
  generator=torch.Generator(device="cuda").manual_seed(current_seed)
166
  ).frames[0]
167
 
 
177
 
178
 
179
  with gr.Blocks() as demo:
180
+ gr.Markdown("# Wan2.2-I2V-A14B-Diffusers")
 
181
  with gr.Row():
182
  with gr.Column():
183
  image_url_input = gr.Textbox(