Spaces:
Runtime error
Runtime error
Create synthesis.py
Browse files- synthesis.py +66 -0
synthesis.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
import librosa
|
| 4 |
+
from hparams import hparams
|
| 5 |
+
from wavenet_vocoder import builder
|
| 6 |
+
|
| 7 |
+
torch.set_num_threads(4)
|
| 8 |
+
use_cuda = torch.cuda.is_available()
|
| 9 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def build_model():
|
| 13 |
+
|
| 14 |
+
model = getattr(builder, hparams.builder)(
|
| 15 |
+
out_channels=hparams.out_channels,
|
| 16 |
+
layers=hparams.layers,
|
| 17 |
+
stacks=hparams.stacks,
|
| 18 |
+
residual_channels=hparams.residual_channels,
|
| 19 |
+
gate_channels=hparams.gate_channels,
|
| 20 |
+
skip_out_channels=hparams.skip_out_channels,
|
| 21 |
+
cin_channels=hparams.cin_channels,
|
| 22 |
+
gin_channels=hparams.gin_channels,
|
| 23 |
+
weight_normalization=hparams.weight_normalization,
|
| 24 |
+
n_speakers=hparams.n_speakers,
|
| 25 |
+
dropout=hparams.dropout,
|
| 26 |
+
kernel_size=hparams.kernel_size,
|
| 27 |
+
upsample_conditional_features=hparams.upsample_conditional_features,
|
| 28 |
+
upsample_scales=hparams.upsample_scales,
|
| 29 |
+
freq_axis_kernel_size=hparams.freq_axis_kernel_size,
|
| 30 |
+
scalar_input=True,
|
| 31 |
+
legacy=hparams.legacy,
|
| 32 |
+
)
|
| 33 |
+
return model
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def wavegen(model, c=None, tqdm=tqdm):
|
| 38 |
+
"""Generate waveform samples by WaveNet.
|
| 39 |
+
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
model.eval()
|
| 43 |
+
model.make_generation_fast_()
|
| 44 |
+
|
| 45 |
+
Tc = c.shape[0]
|
| 46 |
+
upsample_factor = hparams.hop_size
|
| 47 |
+
# Overwrite length according to feature size
|
| 48 |
+
length = Tc * upsample_factor
|
| 49 |
+
|
| 50 |
+
# B x C x T
|
| 51 |
+
c = torch.FloatTensor(c.T).unsqueeze(0)
|
| 52 |
+
|
| 53 |
+
initial_input = torch.zeros(1, 1, 1).fill_(0.0)
|
| 54 |
+
|
| 55 |
+
# Transform data to GPU
|
| 56 |
+
initial_input = initial_input.to(device)
|
| 57 |
+
c = None if c is None else c.to(device)
|
| 58 |
+
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
y_hat = model.incremental_forward(
|
| 61 |
+
initial_input, c=c, g=None, T=length, tqdm=tqdm, softmax=True, quantize=True,
|
| 62 |
+
log_scale_min=hparams.log_scale_min)
|
| 63 |
+
|
| 64 |
+
y_hat = y_hat.view(-1).cpu().data.numpy()
|
| 65 |
+
|
| 66 |
+
return y_hat
|