Spaces:
Sleeping
Sleeping
joyinning
commited on
Commit
·
a23be62
1
Parent(s):
132117d
Delete README.md and Upload files
Browse files- README.md +0 -13
- app.py +34 -59
- model_utils.py +256 -0
- models.zip +3 -0
- requirements.txt +4 -1
README.md
DELETED
|
@@ -1,13 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Chatbot Info Extraction
|
| 3 |
-
emoji: 💬
|
| 4 |
-
colorFrom: yellow
|
| 5 |
-
colorTo: purple
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 4.36.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,63 +1,38 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
"""
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def respond(
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
-
|
| 20 |
-
for val in history:
|
| 21 |
-
if val[0]:
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
for message in client.chat_completion(
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
|
|
|
|
|
|
|
| 42 |
"""
|
| 43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 44 |
-
"""
|
| 45 |
-
demo = gr.ChatInterface(
|
| 46 |
-
respond,
|
| 47 |
-
additional_inputs=[
|
| 48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 51 |
-
gr.Slider(
|
| 52 |
-
minimum=0.1,
|
| 53 |
-
maximum=1.0,
|
| 54 |
-
value=0.95,
|
| 55 |
-
step=0.05,
|
| 56 |
-
label="Top-p (nucleus sampling)",
|
| 57 |
-
),
|
| 58 |
-
],
|
| 59 |
-
)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
Automatically generated by Colab.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1Glbl7TT2ZahRqXHGYp9J3zH5U4ZB0Dsd
|
| 8 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from model_utils import load_models, extract_information, predict_tags, extract_4w_qa, generate_why_or_how_question_and_answer
|
| 12 |
+
|
| 13 |
+
bert_model, bilstm_model, ner_tokenizer, id2label_ner = load_models()
|
| 14 |
+
|
| 15 |
+
def extract_and_display_info(user_input):
|
| 16 |
+
if user_input:
|
| 17 |
+
ner_tags = predict_tags(user_input, bilstm_model, ner_tokenizer, id2label_ner)
|
| 18 |
+
extracted_info = extract_4w_qa(user_input, ner_tags)
|
| 19 |
+
qa_result = generate_why_or_how_question_and_answer(extracted_info, user_input)
|
| 20 |
+
|
| 21 |
+
if qa_result:
|
| 22 |
+
extracted_info["Generated Question"] = qa_result["question"]
|
| 23 |
+
extracted_info["Answer"] = qa_result["answer"]
|
| 24 |
+
|
| 25 |
+
output_text = "Extracted Information:\n"
|
| 26 |
+
for question, answer in extracted_info.items():
|
| 27 |
+
output_text += f"- **{question}:** {answer}\n"
|
| 28 |
+
return output_text
|
| 29 |
+
else:
|
| 30 |
+
return "Please enter some text."
|
| 31 |
+
|
| 32 |
+
iface = gr.Interface(
|
| 33 |
+
fn=extract_and_display_info,
|
| 34 |
+
inputs="text",
|
| 35 |
+
outputs="text",
|
| 36 |
+
title="Information Extraction Chatbot"
|
| 37 |
+
)
|
| 38 |
+
iface.launch()
|
model_utils.py
ADDED
|
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import BertTokenizer, BertForTokenClassification, pipeline
|
| 3 |
+
import pickle # for saving and loading Python objects
|
| 4 |
+
from openai import OpenAI
|
| 5 |
+
import tiktoken
|
| 6 |
+
from transformers import AutoConfig, AutoTokenizer
|
| 7 |
+
import os
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from transformers import AutoModel, AutoConfig
|
| 10 |
+
|
| 11 |
+
client = OpenAI(api_key="sk-proj-K2n4UpzlAKfw464kITLHT3BlbkFJfXtLIl4Ejhn1KHQOjnTq")
|
| 12 |
+
|
| 13 |
+
# Define BiLSTMForTokenClassification Class
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class BiLSTMForTokenClassification(nn.Module):
|
| 17 |
+
"""
|
| 18 |
+
This model combines BERT embeddings with a Bidirectional LSTM (BiLSTM) for token-level classification
|
| 19 |
+
tasks like Named Entity Recognition (NER).
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
pretrained_model_name_or_path: Name of the pre-trained BERT model to use (e.g., "bert-base-cased").
|
| 23 |
+
num_labels: Number of different labels to predict.
|
| 24 |
+
hidden_size: Dimension of the hidden states in the BiLSTM (default: 128).
|
| 25 |
+
num_lstm_layers: Number of stacked BiLSTM layers (default: 1).
|
| 26 |
+
"""
|
| 27 |
+
def __init__(self, model_name, num_labels, hidden_size=128, num_lstm_layers=1):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.num_labels = num_labels
|
| 30 |
+
self.config = AutoConfig.from_pretrained(model_name)
|
| 31 |
+
self.bert = AutoModel.from_pretrained(model_name)
|
| 32 |
+
|
| 33 |
+
# Freeze BERT embeddings
|
| 34 |
+
for name, param in self.bert.named_parameters():
|
| 35 |
+
if name.startswith("embeddings"):
|
| 36 |
+
param.requires_grad = False
|
| 37 |
+
|
| 38 |
+
self.bilstm = nn.LSTM(self.bert.config.hidden_size, hidden_size, num_layers=num_lstm_layers, bidirectional=True, batch_first=True)
|
| 39 |
+
self.dropout = nn.Dropout(0.1)
|
| 40 |
+
self.classifier = nn.Linear(hidden_size * 2, num_labels)
|
| 41 |
+
|
| 42 |
+
def forward(self, input_ids, attention_mask=None, labels=None):
|
| 43 |
+
if attention_mask is None:
|
| 44 |
+
attention_mask = torch.ones_like(input_ids)
|
| 45 |
+
|
| 46 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 47 |
+
sequence_output = outputs[0]
|
| 48 |
+
lstm_output, _ = self.bilstm(sequence_output)
|
| 49 |
+
lstm_output = self.dropout(lstm_output)
|
| 50 |
+
|
| 51 |
+
logits = self.classifier(lstm_output)
|
| 52 |
+
loss = None
|
| 53 |
+
|
| 54 |
+
if labels is not None:
|
| 55 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 56 |
+
active_loss = attention_mask.view(-1) == 1
|
| 57 |
+
active_logits = logits.view(-1, self.num_labels)
|
| 58 |
+
active_labels = torch.where(active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels))
|
| 59 |
+
valid_mask = (active_labels >= 0) & (active_labels < self.num_labels)
|
| 60 |
+
active_logits = active_logits[valid_mask]
|
| 61 |
+
active_labels = active_labels[valid_mask]
|
| 62 |
+
loss = loss_fct(active_logits, active_labels)
|
| 63 |
+
|
| 64 |
+
return {'loss': loss, 'logits': logits}
|
| 65 |
+
|
| 66 |
+
# Load custom BiLSTM and pre-trained BERT
|
| 67 |
+
def load_models():
|
| 68 |
+
bert_model = BertForTokenClassification.from_pretrained("joyinning/chatbot-info-extraction/models/bert-model.pkl")
|
| 69 |
+
bert_model.eval()
|
| 70 |
+
|
| 71 |
+
with open('joyinning/chatbot-info-extraction/models/bilstm-model.pkl', 'rb') as f:
|
| 72 |
+
bilstm_model = pickle.load(f)
|
| 73 |
+
|
| 74 |
+
return bert_model, bilstm_model
|
| 75 |
+
|
| 76 |
+
def load_custom_model(model_dir, tokenizer_dir, id2label):
|
| 77 |
+
config = AutoConfig.from_pretrained(model_dir, local_files_only=True)
|
| 78 |
+
config.id2label = id2label
|
| 79 |
+
config.num_labels = len(id2label)
|
| 80 |
+
|
| 81 |
+
model = BiLSTMForTokenClassification(model_name=config._name_or_path, num_labels=config.num_labels)
|
| 82 |
+
model.config.id2label = id2label
|
| 83 |
+
model.load_state_dict(torch.load(os.path.join(model_dir, 'pytorch_model.bin'), map_location=torch.device('cpu')))
|
| 84 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, local_files_only=True)
|
| 85 |
+
|
| 86 |
+
return model, tokenizer
|
| 87 |
+
|
| 88 |
+
ner_model_dir = "models/bilstm_ner"
|
| 89 |
+
tokenizer_dir = "models/tokenizer"
|
| 90 |
+
id2label_ner = {0: 'O', 1: 'I-art', 2: 'B-org', 3: 'B-geo', 4: 'I-per', 5: 'B-eve', 6: 'I-geo', 7: 'B-per', 8: 'I-nat', 9: 'B-art', 10: 'B-tim', 11: 'I-gpe', 12: 'I-tim', 13: 'B-nat', 14: 'B-gpe', 15: 'I-org', 16: 'I-eve'}
|
| 91 |
+
ner_model, ner_tokenizer = load_custom_model(ner_model_dir, tokenizer_dir, id2label_ner)
|
| 92 |
+
|
| 93 |
+
# QA model
|
| 94 |
+
qa_model = pipeline('question-answering', model='deepset/bert-base-cased-squad2')
|
| 95 |
+
|
| 96 |
+
# Function to extract information
|
| 97 |
+
def extract_information(text, bert_model, bilstm_model, ner_tokenizer, id2label_ner):
|
| 98 |
+
extracted_info = {}
|
| 99 |
+
|
| 100 |
+
ner_tags = predict_tags(text, bilstm_model, ner_tokenizer, id2label_ner)
|
| 101 |
+
|
| 102 |
+
extracted_info.update(extract_4w_qa(text, ner_tags))
|
| 103 |
+
|
| 104 |
+
qa_result = generate_why_or_how_question_and_answer(extracted_info, text)
|
| 105 |
+
if qa_result:
|
| 106 |
+
extracted_info.update(qa_result)
|
| 107 |
+
prompt = f"Question: {qa_result['question']}\nContext: {text}\nAnswer:"
|
| 108 |
+
extracted_info["Token Count"] = count_tokens(prompt)
|
| 109 |
+
|
| 110 |
+
return extracted_info
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def predict_tags(sentence, model, tokenizer, label_map):
|
| 114 |
+
"""
|
| 115 |
+
Predicts NER tags for a given sentence using the specified model and tokenizer.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
sentence: The input sentence as a string.
|
| 119 |
+
model: The pre-trained model (BiLSTM) for tag prediction.
|
| 120 |
+
tokenizer: The tokenizer used for converting the sentence into tokens.
|
| 121 |
+
label_map: A dictionary mapping numerical label indices to their corresponding tags.
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
A list of predicted tags for each token in the sentence.
|
| 125 |
+
"""
|
| 126 |
+
tokens = tokenizer.tokenize(tokenizer.decode(tokenizer.encode(sentence)))
|
| 127 |
+
inputs = tokenizer.encode(sentence, return_tensors='pt')
|
| 128 |
+
|
| 129 |
+
outputs = model(inputs)
|
| 130 |
+
logits = outputs['logits']
|
| 131 |
+
predictions = torch.argmax(logits, dim=2)
|
| 132 |
+
|
| 133 |
+
labels = [label_map.get(prediction.item(), "O") for prediction in predictions[0][1:-1]]
|
| 134 |
+
return labels
|
| 135 |
+
|
| 136 |
+
def extract_4w_qa(sentence, ner_tags):
|
| 137 |
+
"""
|
| 138 |
+
Extracts 4w (Who, What, When, Where) information from a sentence
|
| 139 |
+
using NER tags and a question-answering model.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
sentence: The input sentence as a string.
|
| 143 |
+
ner_tags: A list of predicted NER tags for each token in the sentence.
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
A dictionary where keys are 5W1H question words and values are the corresponding
|
| 147 |
+
answers extracted from the sentence.
|
| 148 |
+
"""
|
| 149 |
+
result = {}
|
| 150 |
+
questions = {
|
| 151 |
+
"B-per": "Who",
|
| 152 |
+
"I-per": "Who",
|
| 153 |
+
"B-geo": "Where",
|
| 154 |
+
"I-geo": "Where",
|
| 155 |
+
"B-org": "What organization",
|
| 156 |
+
"I-org": "What organization",
|
| 157 |
+
"B-tim": "When",
|
| 158 |
+
"I-tim": "When",
|
| 159 |
+
"B-art": "What art",
|
| 160 |
+
"I-art": "What art",
|
| 161 |
+
"B-eve": "What event",
|
| 162 |
+
"I-eve": "What event",
|
| 163 |
+
"B-nat": "What natural phenomenon",
|
| 164 |
+
"I-nat": "What natural phenomenon",
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
for ner_tag, entity in zip(ner_tags, sentence.split()): # Removed pos_tags
|
| 168 |
+
if ner_tag in questions:
|
| 169 |
+
question = f"{questions[ner_tag]} is {entity}?" # Removed pos_tag
|
| 170 |
+
answer = qa_model(question=question, context=sentence)["answer"]
|
| 171 |
+
result[questions[ner_tag]] = answer
|
| 172 |
+
|
| 173 |
+
return result
|
| 174 |
+
|
| 175 |
+
def count_tokens(text):
|
| 176 |
+
"""
|
| 177 |
+
Counts the number of tokens in a text string using the tiktoken encoding for GPT-3.5 Turbo.
|
| 178 |
+
|
| 179 |
+
Args:
|
| 180 |
+
text: The input text string.
|
| 181 |
+
|
| 182 |
+
Returns:
|
| 183 |
+
The number of tokens in the text.
|
| 184 |
+
"""
|
| 185 |
+
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo-instruct")
|
| 186 |
+
return len(encoding.encode(text))
|
| 187 |
+
|
| 188 |
+
def generate_why_or_how_question_and_answer(extracted_info, sentence):
|
| 189 |
+
"""
|
| 190 |
+
Generates a "Why" or "How" question based on the extracted 4W information and gets the answer using GPT-3.5.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
extracted_info: A dictionary containing the extracted 4W information.
|
| 194 |
+
sentence: The original sentence.
|
| 195 |
+
|
| 196 |
+
Returns:
|
| 197 |
+
A dictionary containing the generated question and its answer, or None if no relevant question can be generated.
|
| 198 |
+
"""
|
| 199 |
+
|
| 200 |
+
prompt_template = """
|
| 201 |
+
Given the following extracted information and the original sentence, generate a relevant "Why" or "How" question and provide a concise answer based on the given context.
|
| 202 |
+
|
| 203 |
+
Extracted Information: {extracted_info}
|
| 204 |
+
Sentence: {sentence}
|
| 205 |
+
|
| 206 |
+
Question and Answer:
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
prompt = prompt_template.format(extracted_info=extracted_info, sentence=sentence)
|
| 210 |
+
response = client.chat.completions.create(
|
| 211 |
+
model="gpt-3.5-turbo",
|
| 212 |
+
messages=[
|
| 213 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 214 |
+
{"role": "user", "content": prompt},
|
| 215 |
+
],
|
| 216 |
+
max_tokens=150,
|
| 217 |
+
stop=None,
|
| 218 |
+
temperature=0.5,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
question_and_answer = response.choices[0].message.content.strip()
|
| 222 |
+
|
| 223 |
+
if question_and_answer:
|
| 224 |
+
try:
|
| 225 |
+
question, answer = question_and_answer.split("\n", 1)
|
| 226 |
+
return {"question": question, "answer": answer}
|
| 227 |
+
except ValueError:
|
| 228 |
+
return None
|
| 229 |
+
else:
|
| 230 |
+
return None
|
| 231 |
+
|
| 232 |
+
def get_why_or_how_answer(question, context):
|
| 233 |
+
"""
|
| 234 |
+
Queries OpenAI's GPT-3.5 model to generate an answer for a given question based on the provided context.
|
| 235 |
+
|
| 236 |
+
Args:
|
| 237 |
+
question (str): The question to be answered.
|
| 238 |
+
context (str): The text context from which the answer should be extracted.
|
| 239 |
+
|
| 240 |
+
Returns:
|
| 241 |
+
str: The generated answer from GPT-3.5.
|
| 242 |
+
"""
|
| 243 |
+
prompt = f"Question: {question}\nContext: {context}\nAnswer:"
|
| 244 |
+
|
| 245 |
+
response = client.chat.completions.create(
|
| 246 |
+
model="gpt-3.5-turbo",
|
| 247 |
+
messages=[
|
| 248 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 249 |
+
{"role": "user", "content": prompt},
|
| 250 |
+
],
|
| 251 |
+
max_tokens=150,
|
| 252 |
+
stop=None,
|
| 253 |
+
temperature=0.5,
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
return response.choices[0].text.strip()
|
models.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bfe8ec2516acda102b287fb506e72cfc626e39cde319f454153f3fb3ad01145a
|
| 3 |
+
size 1450014492
|
requirements.txt
CHANGED
|
@@ -1 +1,4 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
pickle
|