Update core/graph_mamba.py
Browse files- core/graph_mamba.py +60 -20
core/graph_mamba.py
CHANGED
|
@@ -6,7 +6,7 @@ from .graph_sequencer import GraphSequencer, PositionalEncoder
|
|
| 6 |
class GraphMamba(nn.Module):
|
| 7 |
"""
|
| 8 |
Production Graph-Mamba model
|
| 9 |
-
|
| 10 |
"""
|
| 11 |
|
| 12 |
def __init__(self, config):
|
|
@@ -48,14 +48,22 @@ class GraphMamba(nn.Module):
|
|
| 48 |
# Graph sequencer
|
| 49 |
self.sequencer = GraphSequencer()
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
| 52 |
"""Initialize input projection dynamically"""
|
| 53 |
if self.input_proj is None:
|
| 54 |
-
self.input_proj = nn.Linear(input_dim, self.d_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
def forward(self, x, edge_index, batch=None):
|
| 57 |
"""
|
| 58 |
-
Forward pass with
|
| 59 |
|
| 60 |
Args:
|
| 61 |
x: Node features (num_nodes, input_dim)
|
|
@@ -64,9 +72,13 @@ class GraphMamba(nn.Module):
|
|
| 64 |
"""
|
| 65 |
num_nodes = x.size(0)
|
| 66 |
input_dim = x.size(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# Initialize input projection if needed
|
| 69 |
-
self._init_input_proj(input_dim)
|
| 70 |
|
| 71 |
# Project input features
|
| 72 |
h = self.input_proj(x) # (num_nodes, d_model)
|
|
@@ -81,22 +93,31 @@ class GraphMamba(nn.Module):
|
|
| 81 |
return h
|
| 82 |
|
| 83 |
def _process_single_graph(self, h, edge_index):
|
| 84 |
-
"""Process a single graph"""
|
| 85 |
num_nodes = h.size(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
# Get ordering
|
| 88 |
-
if self.ordering_strategy == "
|
| 89 |
-
# Use BFS as primary for now (can be extended)
|
| 90 |
-
order = self.sequencer.bfs_ordering(edge_index, num_nodes)
|
| 91 |
-
elif self.ordering_strategy == "spectral":
|
| 92 |
order = self.sequencer.spectral_ordering(edge_index, num_nodes)
|
| 93 |
elif self.ordering_strategy == "degree":
|
| 94 |
order = self.sequencer.degree_ordering(edge_index, num_nodes)
|
|
|
|
|
|
|
| 95 |
else: # default to BFS
|
| 96 |
order = self.sequencer.bfs_ordering(edge_index, num_nodes)
|
| 97 |
|
|
|
|
|
|
|
|
|
|
| 98 |
# Add positional encoding
|
| 99 |
seq_pos, distances = self.pos_encoder.encode_positions(h, edge_index, order)
|
|
|
|
|
|
|
|
|
|
| 100 |
pos_features = torch.cat([seq_pos, distances], dim=1) # (num_nodes, 11)
|
| 101 |
pos_embed = self.pos_embed(pos_features)
|
| 102 |
|
|
@@ -119,7 +140,11 @@ class GraphMamba(nn.Module):
|
|
| 119 |
return h_final
|
| 120 |
|
| 121 |
def _process_batch(self, h, edge_index, batch):
|
| 122 |
-
"""Process batched graphs"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
batch_size = batch.max().item() + 1
|
| 124 |
outputs = []
|
| 125 |
|
|
@@ -132,11 +157,15 @@ class GraphMamba(nn.Module):
|
|
| 132 |
edge_mask = mask[edge_index[0]] & mask[edge_index[1]]
|
| 133 |
batch_edges = edge_index[:, edge_mask]
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
# Process subgraph
|
| 142 |
batch_output = self._process_single_graph(batch_h, batch_edges_local)
|
|
@@ -144,7 +173,6 @@ class GraphMamba(nn.Module):
|
|
| 144 |
|
| 145 |
# Reconstruct full batch
|
| 146 |
h_out = torch.zeros_like(h)
|
| 147 |
-
start_idx = 0
|
| 148 |
for b, output in enumerate(outputs):
|
| 149 |
mask = batch == b
|
| 150 |
h_out[mask] = output
|
|
@@ -157,6 +185,18 @@ class GraphMamba(nn.Module):
|
|
| 157 |
# Single graph - mean pooling
|
| 158 |
return h.mean(dim=0, keepdim=True)
|
| 159 |
else:
|
| 160 |
-
# Batched graphs
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
class GraphMamba(nn.Module):
|
| 7 |
"""
|
| 8 |
Production Graph-Mamba model
|
| 9 |
+
Device-safe implementation with dynamic handling
|
| 10 |
"""
|
| 11 |
|
| 12 |
def __init__(self, config):
|
|
|
|
| 48 |
# Graph sequencer
|
| 49 |
self.sequencer = GraphSequencer()
|
| 50 |
|
| 51 |
+
# Classification head (for demo)
|
| 52 |
+
self.classifier = None
|
| 53 |
+
|
| 54 |
+
def _init_input_proj(self, input_dim, device):
|
| 55 |
"""Initialize input projection dynamically"""
|
| 56 |
if self.input_proj is None:
|
| 57 |
+
self.input_proj = nn.Linear(input_dim, self.d_model).to(device)
|
| 58 |
+
|
| 59 |
+
def _init_classifier(self, num_classes, device):
|
| 60 |
+
"""Initialize classifier dynamically"""
|
| 61 |
+
if self.classifier is None:
|
| 62 |
+
self.classifier = nn.Linear(self.d_model, num_classes).to(device)
|
| 63 |
|
| 64 |
def forward(self, x, edge_index, batch=None):
|
| 65 |
"""
|
| 66 |
+
Forward pass with device-safe handling
|
| 67 |
|
| 68 |
Args:
|
| 69 |
x: Node features (num_nodes, input_dim)
|
|
|
|
| 72 |
"""
|
| 73 |
num_nodes = x.size(0)
|
| 74 |
input_dim = x.size(1)
|
| 75 |
+
device = x.device
|
| 76 |
+
|
| 77 |
+
# Move all components to correct device
|
| 78 |
+
self.to(device)
|
| 79 |
|
| 80 |
# Initialize input projection if needed
|
| 81 |
+
self._init_input_proj(input_dim, device)
|
| 82 |
|
| 83 |
# Project input features
|
| 84 |
h = self.input_proj(x) # (num_nodes, d_model)
|
|
|
|
| 93 |
return h
|
| 94 |
|
| 95 |
def _process_single_graph(self, h, edge_index):
|
| 96 |
+
"""Process a single graph - device safe"""
|
| 97 |
num_nodes = h.size(0)
|
| 98 |
+
device = h.device
|
| 99 |
+
|
| 100 |
+
# Ensure edge_index is on correct device
|
| 101 |
+
edge_index = edge_index.to(device)
|
| 102 |
|
| 103 |
# Get ordering
|
| 104 |
+
if self.ordering_strategy == "spectral":
|
|
|
|
|
|
|
|
|
|
| 105 |
order = self.sequencer.spectral_ordering(edge_index, num_nodes)
|
| 106 |
elif self.ordering_strategy == "degree":
|
| 107 |
order = self.sequencer.degree_ordering(edge_index, num_nodes)
|
| 108 |
+
elif self.ordering_strategy == "community":
|
| 109 |
+
order = self.sequencer.community_ordering(edge_index, num_nodes)
|
| 110 |
else: # default to BFS
|
| 111 |
order = self.sequencer.bfs_ordering(edge_index, num_nodes)
|
| 112 |
|
| 113 |
+
# Ensure order is on correct device
|
| 114 |
+
order = order.to(device)
|
| 115 |
+
|
| 116 |
# Add positional encoding
|
| 117 |
seq_pos, distances = self.pos_encoder.encode_positions(h, edge_index, order)
|
| 118 |
+
seq_pos = seq_pos.to(device)
|
| 119 |
+
distances = distances.to(device)
|
| 120 |
+
|
| 121 |
pos_features = torch.cat([seq_pos, distances], dim=1) # (num_nodes, 11)
|
| 122 |
pos_embed = self.pos_embed(pos_features)
|
| 123 |
|
|
|
|
| 140 |
return h_final
|
| 141 |
|
| 142 |
def _process_batch(self, h, edge_index, batch):
|
| 143 |
+
"""Process batched graphs - device safe"""
|
| 144 |
+
device = h.device
|
| 145 |
+
batch = batch.to(device)
|
| 146 |
+
edge_index = edge_index.to(device)
|
| 147 |
+
|
| 148 |
batch_size = batch.max().item() + 1
|
| 149 |
outputs = []
|
| 150 |
|
|
|
|
| 157 |
edge_mask = mask[edge_index[0]] & mask[edge_index[1]]
|
| 158 |
batch_edges = edge_index[:, edge_mask]
|
| 159 |
|
| 160 |
+
if batch_edges.shape[1] > 0:
|
| 161 |
+
# Reindex edges to local indices
|
| 162 |
+
node_indices = torch.where(mask)[0]
|
| 163 |
+
node_map = torch.zeros(h.size(0), dtype=torch.long, device=device)
|
| 164 |
+
node_map[node_indices] = torch.arange(batch_h.size(0), device=device)
|
| 165 |
+
batch_edges_local = node_map[batch_edges]
|
| 166 |
+
else:
|
| 167 |
+
# Empty graph
|
| 168 |
+
batch_edges_local = torch.empty((2, 0), dtype=torch.long, device=device)
|
| 169 |
|
| 170 |
# Process subgraph
|
| 171 |
batch_output = self._process_single_graph(batch_h, batch_edges_local)
|
|
|
|
| 173 |
|
| 174 |
# Reconstruct full batch
|
| 175 |
h_out = torch.zeros_like(h)
|
|
|
|
| 176 |
for b, output in enumerate(outputs):
|
| 177 |
mask = batch == b
|
| 178 |
h_out[mask] = output
|
|
|
|
| 185 |
# Single graph - mean pooling
|
| 186 |
return h.mean(dim=0, keepdim=True)
|
| 187 |
else:
|
| 188 |
+
# Batched graphs - manual pooling to avoid dependencies
|
| 189 |
+
device = h.device
|
| 190 |
+
batch = batch.to(device)
|
| 191 |
+
batch_size = batch.max().item() + 1
|
| 192 |
+
|
| 193 |
+
graph_embeddings = []
|
| 194 |
+
for b in range(batch_size):
|
| 195 |
+
mask = batch == b
|
| 196 |
+
if mask.any():
|
| 197 |
+
graph_emb = h[mask].mean(dim=0)
|
| 198 |
+
graph_embeddings.append(graph_emb)
|
| 199 |
+
else:
|
| 200 |
+
graph_embeddings.append(torch.zeros(h.size(1), device=device))
|
| 201 |
+
|
| 202 |
+
return torch.stack(graph_embeddings)
|