kshitijthakkar
commited on
Commit
·
ddc41f5
1
Parent(s):
4ea319e
fixed the task dropdown on tab 2 and enhanced model handler
Browse files- enhanced_app.py +148 -113
- enhanced_model_handler.py +1297 -0
- model_handler.py +1 -1
enhanced_app.py
CHANGED
|
@@ -6,7 +6,9 @@ import datetime
|
|
| 6 |
import json
|
| 7 |
import random
|
| 8 |
import os
|
| 9 |
-
from model_handler import generate_response, get_inference_configs
|
|
|
|
|
|
|
| 10 |
import torch
|
| 11 |
|
| 12 |
# Configuration for datasets
|
|
@@ -210,10 +212,18 @@ def get_eval_dataset_info(dataset_name):
|
|
| 210 |
return "No dataset selected"
|
| 211 |
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
def get_task_types_for_eval(dataset_name):
|
| 214 |
"""Get unique task types from selected eval dataset"""
|
| 215 |
if dataset_name in EVAL_DATASETS and 'task_type' in EVAL_DATASETS[dataset_name].columns:
|
| 216 |
task_types = EVAL_DATASETS[dataset_name]['task_type'].unique().tolist()
|
|
|
|
|
|
|
| 217 |
return [str(t) for t in task_types if pd.notna(t)]
|
| 218 |
return ["No task types available"]
|
| 219 |
|
|
@@ -235,36 +245,58 @@ def get_tasks_by_type_eval(dataset_name, task_type):
|
|
| 235 |
return ["No tasks found"]
|
| 236 |
|
| 237 |
|
| 238 |
-
def get_selected_row_data(dataset_name, task_type, selected_task):
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
-
|
| 265 |
-
return f"Error: {str(e)}", "", "", "", "", "", "", ""
|
| 266 |
|
| 267 |
-
return "", "", "", "", "", ""
|
| 268 |
|
| 269 |
# ===== TAB 3: VIEW FLAGGED RESPONSES =====
|
| 270 |
|
|
@@ -457,46 +489,46 @@ def create_interface():
|
|
| 457 |
)
|
| 458 |
|
| 459 |
# TAB 2: EVAL SAMPLES
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
with gr.Tab("📊 Eval Samples"):
|
| 461 |
gr.Markdown("## Dataset Evaluation Samples")
|
| 462 |
-
|
| 463 |
-
with gr.Row():
|
| 464 |
-
with gr.Column(scale=1):
|
| 465 |
-
eval_dataset_dropdown = gr.Dropdown(
|
| 466 |
-
choices=list(EVAL_DATASETS.keys()),
|
| 467 |
-
value=list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else None,
|
| 468 |
-
label="Select Dataset",
|
| 469 |
-
info="Choose evaluation dataset to view"
|
| 470 |
-
)
|
| 471 |
-
|
| 472 |
-
eval_dataset_info = gr.Markdown(
|
| 473 |
-
get_eval_dataset_info(list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else "")
|
| 474 |
-
)
|
| 475 |
-
|
| 476 |
-
with gr.Row():
|
| 477 |
-
eval_table = gr.Dataframe(
|
| 478 |
-
value=update_eval_table(list(EVAL_DATASETS.keys())[0]) if EVAL_DATASETS else pd.DataFrame(),
|
| 479 |
-
label="Dataset Table",
|
| 480 |
-
max_height=800,
|
| 481 |
-
min_width=800,
|
| 482 |
-
interactive=True,
|
| 483 |
-
wrap=True,
|
| 484 |
-
show_fullscreen_button=True,
|
| 485 |
-
show_copy_button=True,
|
| 486 |
-
show_row_numbers=True,
|
| 487 |
-
show_search="search",
|
| 488 |
-
column_widths=["80px","80px","80px","150px","250px","250px","250px"]
|
| 489 |
-
)
|
| 490 |
-
|
| 491 |
-
# Event handlers for Tab 2
|
| 492 |
-
eval_dataset_dropdown.change(
|
| 493 |
-
fn=lambda x: (update_eval_table(x), get_eval_dataset_info(x)),
|
| 494 |
-
inputs=[eval_dataset_dropdown],
|
| 495 |
-
outputs=[eval_table, eval_dataset_info]
|
| 496 |
-
)
|
| 497 |
-
with gr.Tab("📊 Eval Samples 2"):
|
| 498 |
-
gr.Markdown("## Dataset Evaluation Samples")
|
| 499 |
-
gr.Markdown("Select dataset, task type, and specific task to view detailed information")
|
| 500 |
|
| 501 |
with gr.Row():
|
| 502 |
with gr.Column(scale=1):
|
|
@@ -510,13 +542,8 @@ def create_interface():
|
|
| 510 |
eval_task_type_dropdown = gr.Dropdown(
|
| 511 |
choices=[],
|
| 512 |
label="Select Task Type",
|
| 513 |
-
info="Choose task type from selected dataset"
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
eval_task_dropdown = gr.Dropdown(
|
| 517 |
-
choices=[],
|
| 518 |
-
label="Select Specific Task",
|
| 519 |
-
info="Choose specific task to view details"
|
| 520 |
)
|
| 521 |
|
| 522 |
with gr.Column(scale=1):
|
|
@@ -526,39 +553,33 @@ def create_interface():
|
|
| 526 |
|
| 527 |
# Task details section
|
| 528 |
gr.Markdown("### Task Details")
|
| 529 |
-
|
| 530 |
with gr.Row():
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
interactive=False
|
| 537 |
-
)
|
| 538 |
-
|
| 539 |
-
task_type_field = gr.Textbox(
|
| 540 |
-
label="Task Type",
|
| 541 |
-
lines=1,
|
| 542 |
-
interactive=False
|
| 543 |
-
)
|
| 544 |
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
label="output_model",
|
| 559 |
-
lines=1,
|
| 560 |
-
interactive=False
|
| 561 |
-
)
|
| 562 |
|
| 563 |
# Large text fields for outputs side by side
|
| 564 |
gr.Markdown("### Expected vs Actual Response Comparison")
|
|
@@ -579,25 +600,39 @@ def create_interface():
|
|
| 579 |
)
|
| 580 |
|
| 581 |
# Event handlers for Tab 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 582 |
eval_dataset_dropdown.change(
|
| 583 |
-
fn=
|
| 584 |
inputs=[eval_dataset_dropdown],
|
| 585 |
-
outputs=[eval_dataset_info, eval_task_type_dropdown
|
| 586 |
)
|
| 587 |
-
|
| 588 |
eval_task_type_dropdown.change(
|
| 589 |
-
fn=
|
| 590 |
inputs=[eval_dataset_dropdown, eval_task_type_dropdown],
|
| 591 |
-
outputs=[
|
| 592 |
-
)
|
| 593 |
-
|
| 594 |
-
eval_task_dropdown.change(
|
| 595 |
-
fn=get_selected_row_data,
|
| 596 |
-
inputs=[eval_dataset_dropdown, eval_task_type_dropdown, eval_task_dropdown],
|
| 597 |
-
outputs=[task_type_field, input_model_field, output_model_field, task_field, input_field,
|
| 598 |
loggenix_output_field, expected_response_field]
|
| 599 |
)
|
| 600 |
|
|
|
|
| 601 |
# TAB 3: VIEW FLAGGED RESPONSES (RENAMED FROM TAB 4)
|
| 602 |
with gr.Tab("👀 View Flagged Responses"):
|
| 603 |
gr.Markdown("## Review Flagged Responses")
|
|
|
|
| 6 |
import json
|
| 7 |
import random
|
| 8 |
import os
|
| 9 |
+
#from model_handler import generate_response, get_inference_configs
|
| 10 |
+
from enhanced_model_handler import generate_response, get_inference_configs
|
| 11 |
+
|
| 12 |
import torch
|
| 13 |
|
| 14 |
# Configuration for datasets
|
|
|
|
| 212 |
return "No dataset selected"
|
| 213 |
|
| 214 |
|
| 215 |
+
# def get_task_types_for_eval(dataset_name):
|
| 216 |
+
# """Get unique task types from selected eval dataset"""
|
| 217 |
+
# if dataset_name in EVAL_DATASETS and 'task_type' in EVAL_DATASETS[dataset_name].columns:
|
| 218 |
+
# task_types = EVAL_DATASETS[dataset_name]['task_type'].unique().tolist()
|
| 219 |
+
# return [str(t) for t in task_types if pd.notna(t)]
|
| 220 |
+
# return ["No task types available"]
|
| 221 |
def get_task_types_for_eval(dataset_name):
|
| 222 |
"""Get unique task types from selected eval dataset"""
|
| 223 |
if dataset_name in EVAL_DATASETS and 'task_type' in EVAL_DATASETS[dataset_name].columns:
|
| 224 |
task_types = EVAL_DATASETS[dataset_name]['task_type'].unique().tolist()
|
| 225 |
+
# The correct way is to return the list directly, not a joined string.
|
| 226 |
+
# The list comprehension `[str(t) for t in task_types if pd.notna(t)]` already does this.
|
| 227 |
return [str(t) for t in task_types if pd.notna(t)]
|
| 228 |
return ["No task types available"]
|
| 229 |
|
|
|
|
| 245 |
return ["No tasks found"]
|
| 246 |
|
| 247 |
|
| 248 |
+
# def get_selected_row_data(dataset_name, task_type, selected_task):
|
| 249 |
+
# """Get all data for the selected row"""
|
| 250 |
+
# if not selected_task or selected_task == "No tasks found":
|
| 251 |
+
# return "", "", "", "", "", "",""
|
| 252 |
+
#
|
| 253 |
+
# try:
|
| 254 |
+
# # Extract row index from selected_task
|
| 255 |
+
# row_idx = int(selected_task.split("Row ")[1].split(":")[0])
|
| 256 |
+
#
|
| 257 |
+
# if dataset_name in EVAL_DATASETS:
|
| 258 |
+
# df = EVAL_DATASETS[dataset_name]
|
| 259 |
+
# if row_idx in df.index:
|
| 260 |
+
# row = df.loc[row_idx]
|
| 261 |
+
#
|
| 262 |
+
# # Extract all fields with safe handling for missing columns
|
| 263 |
+
# task = str(row.get('task', 'N/A'))
|
| 264 |
+
# task_type_val = str(row.get('task_type', 'N/A'))
|
| 265 |
+
# input_model = str(row.get('input_model', 'N/A'))
|
| 266 |
+
# expected_response = str(row.get('expected_response', 'N/A'))
|
| 267 |
+
# loggenix_output = str(row.get('loggenix_output', 'N/A'))
|
| 268 |
+
# output_model = str(row.get('output_model', 'N/A'))
|
| 269 |
+
# input_text = str(row.get('input', 'N/A'))
|
| 270 |
+
#
|
| 271 |
+
#
|
| 272 |
+
# return task_type_val, input_model, output_model, task, input_text, expected_response, loggenix_output
|
| 273 |
+
#
|
| 274 |
+
# except Exception as e:
|
| 275 |
+
# return f"Error: {str(e)}", "", "", "", "", "", "", ""
|
| 276 |
+
#
|
| 277 |
+
# return "", "", "", "", "", "", ""
|
| 278 |
+
|
| 279 |
+
def get_selected_row_data_by_type(dataset_name, task_type):
|
| 280 |
+
"""Get all data for the first row of a selected dataset and task type"""
|
| 281 |
+
if (dataset_name in EVAL_DATASETS and
|
| 282 |
+
'task_type' in EVAL_DATASETS[dataset_name].columns and
|
| 283 |
+
'task' in EVAL_DATASETS[dataset_name].columns):
|
| 284 |
|
| 285 |
+
filtered = EVAL_DATASETS[dataset_name][EVAL_DATASETS[dataset_name]['task_type'] == task_type]
|
| 286 |
+
if len(filtered) > 0:
|
| 287 |
+
row = filtered.iloc[0] # Get the first row
|
| 288 |
|
| 289 |
+
# Extract all fields with safe handling for missing columns
|
| 290 |
+
task = str(row.get('task', 'N/A'))
|
| 291 |
+
input_model = str(row.get('input_model', 'N/A'))
|
| 292 |
+
expected_response = str(row.get('expected_response', 'N/A'))
|
| 293 |
+
loggenix_output = str(row.get('loggenix_output', 'N/A'))
|
| 294 |
+
output_model = str(row.get('output_model', 'N/A'))
|
| 295 |
+
input_text = str(row.get('input', 'N/A'))
|
| 296 |
|
| 297 |
+
return input_model, output_model, task, input_text, expected_response, loggenix_output
|
|
|
|
| 298 |
|
| 299 |
+
return "", "", "", "", "", ""
|
| 300 |
|
| 301 |
# ===== TAB 3: VIEW FLAGGED RESPONSES =====
|
| 302 |
|
|
|
|
| 489 |
)
|
| 490 |
|
| 491 |
# TAB 2: EVAL SAMPLES
|
| 492 |
+
# with gr.Tab("📊 Eval Samples"):
|
| 493 |
+
# gr.Markdown("## Dataset Evaluation Samples")
|
| 494 |
+
#
|
| 495 |
+
# with gr.Row():
|
| 496 |
+
# with gr.Column(scale=1):
|
| 497 |
+
# eval_dataset_dropdown = gr.Dropdown(
|
| 498 |
+
# choices=list(EVAL_DATASETS.keys()),
|
| 499 |
+
# value=list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else None,
|
| 500 |
+
# label="Select Dataset",
|
| 501 |
+
# info="Choose evaluation dataset to view"
|
| 502 |
+
# )
|
| 503 |
+
#
|
| 504 |
+
# eval_dataset_info = gr.Markdown(
|
| 505 |
+
# get_eval_dataset_info(list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else "")
|
| 506 |
+
# )
|
| 507 |
+
#
|
| 508 |
+
# with gr.Row():
|
| 509 |
+
# eval_table = gr.Dataframe(
|
| 510 |
+
# value=update_eval_table(list(EVAL_DATASETS.keys())[0]) if EVAL_DATASETS else pd.DataFrame(),
|
| 511 |
+
# label="Dataset Table",
|
| 512 |
+
# max_height=800,
|
| 513 |
+
# min_width=800,
|
| 514 |
+
# interactive=True,
|
| 515 |
+
# wrap=True,
|
| 516 |
+
# show_fullscreen_button=True,
|
| 517 |
+
# show_copy_button=True,
|
| 518 |
+
# show_row_numbers=True,
|
| 519 |
+
# show_search="search",
|
| 520 |
+
# column_widths=["80px","80px","80px","150px","250px","250px","250px"]
|
| 521 |
+
# )
|
| 522 |
+
#
|
| 523 |
+
# # Event handlers for Tab 2
|
| 524 |
+
# eval_dataset_dropdown.change(
|
| 525 |
+
# fn=lambda x: (update_eval_table(x), get_eval_dataset_info(x)),
|
| 526 |
+
# inputs=[eval_dataset_dropdown],
|
| 527 |
+
# outputs=[eval_table, eval_dataset_info]
|
| 528 |
+
# )
|
| 529 |
with gr.Tab("📊 Eval Samples"):
|
| 530 |
gr.Markdown("## Dataset Evaluation Samples")
|
| 531 |
+
gr.Markdown("Select dataset and task type to view detailed information")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
|
| 533 |
with gr.Row():
|
| 534 |
with gr.Column(scale=1):
|
|
|
|
| 542 |
eval_task_type_dropdown = gr.Dropdown(
|
| 543 |
choices=[],
|
| 544 |
label="Select Task Type",
|
| 545 |
+
info="Choose task type from selected dataset",
|
| 546 |
+
allow_custom_value=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
)
|
| 548 |
|
| 549 |
with gr.Column(scale=1):
|
|
|
|
| 553 |
|
| 554 |
# Task details section
|
| 555 |
gr.Markdown("### Task Details")
|
|
|
|
| 556 |
with gr.Row():
|
| 557 |
+
input_model_field = gr.Textbox(
|
| 558 |
+
label="input_model",
|
| 559 |
+
lines=1,
|
| 560 |
+
interactive=False
|
| 561 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
|
| 563 |
+
output_model_field = gr.Textbox(
|
| 564 |
+
label="output_model",
|
| 565 |
+
lines=1,
|
| 566 |
+
interactive=False
|
| 567 |
+
)
|
| 568 |
+
with gr.Row():
|
| 569 |
+
task_field = gr.Textbox(
|
| 570 |
+
label="Task",
|
| 571 |
+
lines=2,
|
| 572 |
+
max_lines=5,
|
| 573 |
+
interactive=False
|
| 574 |
+
)
|
| 575 |
|
| 576 |
+
with gr.Row():
|
| 577 |
+
input_field = gr.Textbox(
|
| 578 |
+
label="input",
|
| 579 |
+
lines=8,
|
| 580 |
+
max_lines=20,
|
| 581 |
+
interactive=False
|
| 582 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 583 |
|
| 584 |
# Large text fields for outputs side by side
|
| 585 |
gr.Markdown("### Expected vs Actual Response Comparison")
|
|
|
|
| 600 |
)
|
| 601 |
|
| 602 |
# Event handlers for Tab 2
|
| 603 |
+
# eval_dataset_dropdown.change(
|
| 604 |
+
# fn=lambda x: (get_eval_dataset_info(x), get_task_types_for_eval(x), None),
|
| 605 |
+
# inputs=[eval_dataset_dropdown],
|
| 606 |
+
# outputs=[eval_dataset_info, eval_task_type_dropdown]
|
| 607 |
+
# )
|
| 608 |
+
|
| 609 |
+
# Event handlers for Tab 2
|
| 610 |
+
# eval_dataset_dropdown.change(
|
| 611 |
+
# fn=lambda x: (get_eval_dataset_info(x), get_task_types_for_eval(x)),
|
| 612 |
+
# inputs=[eval_dataset_dropdown],
|
| 613 |
+
# outputs=[eval_dataset_info, eval_task_type_dropdown]
|
| 614 |
+
# )
|
| 615 |
+
# Define a new function instead of lambda for clarity
|
| 616 |
+
def update_eval_components(dataset_name):
|
| 617 |
+
info = get_eval_dataset_info(dataset_name)
|
| 618 |
+
task_types = get_task_types_for_eval(dataset_name)
|
| 619 |
+
return info, gr.update(choices=task_types,
|
| 620 |
+
value=task_types[0] if task_types else "No task types available")
|
| 621 |
+
|
| 622 |
+
# In the event handlers for Tab 2, replace the existing .change with this:
|
| 623 |
eval_dataset_dropdown.change(
|
| 624 |
+
fn=update_eval_components,
|
| 625 |
inputs=[eval_dataset_dropdown],
|
| 626 |
+
outputs=[eval_dataset_info, eval_task_type_dropdown]
|
| 627 |
)
|
|
|
|
| 628 |
eval_task_type_dropdown.change(
|
| 629 |
+
fn=get_selected_row_data_by_type,
|
| 630 |
inputs=[eval_dataset_dropdown, eval_task_type_dropdown],
|
| 631 |
+
outputs=[input_model_field, output_model_field, task_field, input_field,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 632 |
loggenix_output_field, expected_response_field]
|
| 633 |
)
|
| 634 |
|
| 635 |
+
# NOTE: The get_tasks_by_type_eval and eval_task_dropdown.change handlers are removed as per request.
|
| 636 |
# TAB 3: VIEW FLAGGED RESPONSES (RENAMED FROM TAB 4)
|
| 637 |
with gr.Tab("👀 View Flagged Responses"):
|
| 638 |
gr.Markdown("## Review Flagged Responses")
|
enhanced_model_handler.py
ADDED
|
@@ -0,0 +1,1297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import time
|
| 3 |
+
import gc
|
| 4 |
+
import json
|
| 5 |
+
import re
|
| 6 |
+
import logging
|
| 7 |
+
import traceback
|
| 8 |
+
import sys
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import Dict, Any, Optional, Tuple
|
| 11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Configure logging
|
| 15 |
+
def setup_logging(log_level=logging.INFO, log_file="model_inference.log"):
|
| 16 |
+
"""Setup comprehensive logging configuration"""
|
| 17 |
+
# Create logs directory if it doesn't exist
|
| 18 |
+
log_dir = Path("logs")
|
| 19 |
+
log_dir.mkdir(exist_ok=True)
|
| 20 |
+
|
| 21 |
+
# Create formatter
|
| 22 |
+
formatter = logging.Formatter(
|
| 23 |
+
'%(asctime)s - %(name)s - %(levelname)s - %(funcName)s:%(lineno)d - %(message)s'
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Setup file handler
|
| 27 |
+
file_handler = logging.FileHandler(log_dir / log_file)
|
| 28 |
+
file_handler.setLevel(log_level)
|
| 29 |
+
file_handler.setFormatter(formatter)
|
| 30 |
+
|
| 31 |
+
# Setup console handler
|
| 32 |
+
console_handler = logging.StreamHandler(sys.stdout)
|
| 33 |
+
console_handler.setLevel(log_level)
|
| 34 |
+
console_handler.setFormatter(formatter)
|
| 35 |
+
|
| 36 |
+
# Setup logger
|
| 37 |
+
logger = logging.getLogger(__name__)
|
| 38 |
+
logger.setLevel(log_level)
|
| 39 |
+
logger.addHandler(file_handler)
|
| 40 |
+
logger.addHandler(console_handler)
|
| 41 |
+
|
| 42 |
+
# Prevent duplicate logs
|
| 43 |
+
logger.propagate = False
|
| 44 |
+
|
| 45 |
+
return logger
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Initialize logger
|
| 49 |
+
logger = setup_logging()
|
| 50 |
+
|
| 51 |
+
# Performance optimizations
|
| 52 |
+
try:
|
| 53 |
+
torch.backends.cudnn.benchmark = True
|
| 54 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 55 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 56 |
+
logger.info("PyTorch optimizations enabled successfully")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
logger.warning(f"Failed to enable some PyTorch optimizations: {e}")
|
| 59 |
+
|
| 60 |
+
# Global model and tokenizer variables
|
| 61 |
+
model = None
|
| 62 |
+
tokenizer = None
|
| 63 |
+
MODEL_ID = "kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.3-finetuned-tool"
|
| 64 |
+
|
| 65 |
+
# Inference configurations
|
| 66 |
+
INFERENCE_CONFIGS = {
|
| 67 |
+
"Optimized for Speed": {
|
| 68 |
+
"max_new_tokens_base": 512,
|
| 69 |
+
"max_new_tokens_cap": 512,
|
| 70 |
+
"min_tokens": 50,
|
| 71 |
+
"temperature": 0.7,
|
| 72 |
+
"top_p": 0.9,
|
| 73 |
+
"do_sample": True,
|
| 74 |
+
"use_cache": False,
|
| 75 |
+
"description": "Fast responses with limited output length"
|
| 76 |
+
},
|
| 77 |
+
"Middle-ground": {
|
| 78 |
+
"max_new_tokens_base": 2048,
|
| 79 |
+
"max_new_tokens_cap": 2048,
|
| 80 |
+
"min_tokens": 50,
|
| 81 |
+
"temperature": 0.7,
|
| 82 |
+
"top_p": 0.9,
|
| 83 |
+
"do_sample": True,
|
| 84 |
+
"use_cache": False,
|
| 85 |
+
"description": "Balanced performance and output quality"
|
| 86 |
+
},
|
| 87 |
+
"Full Capacity": {
|
| 88 |
+
"max_new_tokens_base": 4096,
|
| 89 |
+
"max_new_tokens_cap": 4096,
|
| 90 |
+
"min_tokens": 1,
|
| 91 |
+
"temperature": 0.7,
|
| 92 |
+
"top_p": 0.9,
|
| 93 |
+
"do_sample": True,
|
| 94 |
+
"use_cache": False,
|
| 95 |
+
"description": "Maximum output length with dynamic allocation"
|
| 96 |
+
}
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def validate_config(config_name: str) -> bool:
|
| 101 |
+
"""Validate inference configuration"""
|
| 102 |
+
try:
|
| 103 |
+
if config_name not in INFERENCE_CONFIGS:
|
| 104 |
+
logger.error(f"Invalid config name: {config_name}. Available: {list(INFERENCE_CONFIGS.keys())}")
|
| 105 |
+
return False
|
| 106 |
+
|
| 107 |
+
config = INFERENCE_CONFIGS[config_name]
|
| 108 |
+
required_fields = ["max_new_tokens_base", "max_new_tokens_cap", "min_tokens", "temperature", "top_p"]
|
| 109 |
+
|
| 110 |
+
for field in required_fields:
|
| 111 |
+
if field not in config:
|
| 112 |
+
logger.error(f"Missing required field '{field}' in config '{config_name}'")
|
| 113 |
+
return False
|
| 114 |
+
|
| 115 |
+
logger.debug(f"Configuration '{config_name}' validated successfully")
|
| 116 |
+
return True
|
| 117 |
+
except Exception as e:
|
| 118 |
+
logger.error(f"Error validating config '{config_name}': {e}")
|
| 119 |
+
return False
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def get_inference_configs():
|
| 123 |
+
"""Get available inference configurations"""
|
| 124 |
+
try:
|
| 125 |
+
logger.debug("Retrieving inference configurations")
|
| 126 |
+
return INFERENCE_CONFIGS
|
| 127 |
+
except Exception as e:
|
| 128 |
+
logger.error(f"Error retrieving inference configurations: {e}")
|
| 129 |
+
return {}
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def check_system_requirements() -> bool:
|
| 133 |
+
"""Check if system meets requirements for model loading"""
|
| 134 |
+
try:
|
| 135 |
+
# Check CUDA availability
|
| 136 |
+
if not torch.cuda.is_available():
|
| 137 |
+
logger.warning("CUDA is not available. Model will run on CPU (much slower)")
|
| 138 |
+
return True # Still allow CPU execution
|
| 139 |
+
|
| 140 |
+
# Check GPU memory
|
| 141 |
+
gpu_count = torch.cuda.device_count()
|
| 142 |
+
logger.info(f"Found {gpu_count} GPU(s)")
|
| 143 |
+
|
| 144 |
+
for i in range(gpu_count):
|
| 145 |
+
gpu_props = torch.cuda.get_device_properties(i)
|
| 146 |
+
total_memory = gpu_props.total_memory / 1e9
|
| 147 |
+
logger.info(f"GPU {i}: {gpu_props.name}, Memory: {total_memory:.1f}GB")
|
| 148 |
+
|
| 149 |
+
if total_memory < 4.0: # Minimum 4GB for quantized model
|
| 150 |
+
logger.warning(f"GPU {i} has insufficient memory ({total_memory:.1f}GB < 4.0GB)")
|
| 151 |
+
|
| 152 |
+
return True
|
| 153 |
+
except Exception as e:
|
| 154 |
+
logger.error(f"Error checking system requirements: {e}")
|
| 155 |
+
return False
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def load_model() -> Tuple[Optional[Any], Optional[Any]]:
|
| 159 |
+
"""Load model and tokenizer with comprehensive error handling"""
|
| 160 |
+
global model, tokenizer
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
if model is not None and tokenizer is not None:
|
| 164 |
+
logger.debug("Model and tokenizer already loaded")
|
| 165 |
+
return model, tokenizer
|
| 166 |
+
|
| 167 |
+
logger.info("Starting model loading process...")
|
| 168 |
+
|
| 169 |
+
# Check system requirements
|
| 170 |
+
if not check_system_requirements():
|
| 171 |
+
logger.error("System requirements check failed")
|
| 172 |
+
return None, None
|
| 173 |
+
|
| 174 |
+
# Load tokenizer with error handling
|
| 175 |
+
logger.info(f"Loading tokenizer from {MODEL_ID}...")
|
| 176 |
+
try:
|
| 177 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 178 |
+
MODEL_ID,
|
| 179 |
+
trust_remote_code=True, # Add this for custom tokenizers
|
| 180 |
+
#cache_dir="./model_cache" # Use local cache
|
| 181 |
+
)
|
| 182 |
+
logger.info("Tokenizer loaded successfully")
|
| 183 |
+
except Exception as e:
|
| 184 |
+
logger.error(f"Failed to load tokenizer: {e}")
|
| 185 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 186 |
+
return None, None
|
| 187 |
+
|
| 188 |
+
# Configure quantization
|
| 189 |
+
try:
|
| 190 |
+
quantization_config = BitsAndBytesConfig(
|
| 191 |
+
load_in_8bit=True,
|
| 192 |
+
llm_int8_threshold=6.0,
|
| 193 |
+
llm_int8_has_fp16_weight=False,
|
| 194 |
+
)
|
| 195 |
+
logger.info("8-bit quantization configuration created")
|
| 196 |
+
except Exception as e:
|
| 197 |
+
logger.error(f"Failed to create quantization config: {e}")
|
| 198 |
+
quantization_config = None
|
| 199 |
+
|
| 200 |
+
# Load model with extensive error handling
|
| 201 |
+
logger.info(f"Loading model from {MODEL_ID}...")
|
| 202 |
+
try:
|
| 203 |
+
model_kwargs = {
|
| 204 |
+
"device_map": "auto",
|
| 205 |
+
"dtype": torch.float16,
|
| 206 |
+
"use_cache": False,
|
| 207 |
+
"trust_remote_code": True,
|
| 208 |
+
#"cache_dir": "./model_cache"
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
# Add quantization if available
|
| 212 |
+
if quantization_config:
|
| 213 |
+
model_kwargs["quantization_config"] = quantization_config
|
| 214 |
+
|
| 215 |
+
# Try to use flash attention if available
|
| 216 |
+
try:
|
| 217 |
+
if hasattr(torch.nn, 'scaled_dot_product_attention'):
|
| 218 |
+
model_kwargs["attn_implementation"] = "flash_attention_2"
|
| 219 |
+
logger.info("Using Flash Attention 2")
|
| 220 |
+
except Exception as e:
|
| 221 |
+
logger.warning(f"Flash Attention 2 not available: {e}")
|
| 222 |
+
|
| 223 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **model_kwargs)
|
| 224 |
+
model = model.eval()
|
| 225 |
+
logger.info("Model loaded successfully")
|
| 226 |
+
|
| 227 |
+
except torch.cuda.OutOfMemoryError:
|
| 228 |
+
logger.error("CUDA out of memory. Try reducing batch size or using CPU")
|
| 229 |
+
return None, None
|
| 230 |
+
except Exception as e:
|
| 231 |
+
logger.error(f"Failed to load model: {e}")
|
| 232 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 233 |
+
return None, None
|
| 234 |
+
|
| 235 |
+
# Configure model settings with error handling
|
| 236 |
+
try:
|
| 237 |
+
# Enable gradient checkpointing if available
|
| 238 |
+
if hasattr(model, 'gradient_checkpointing_enable'):
|
| 239 |
+
model.gradient_checkpointing_enable()
|
| 240 |
+
logger.debug("Gradient checkpointing enabled")
|
| 241 |
+
|
| 242 |
+
# Set pad_token_id
|
| 243 |
+
if model.config.pad_token_id is None:
|
| 244 |
+
if tokenizer.pad_token_id is not None:
|
| 245 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
| 246 |
+
logger.debug("Set model pad_token_id from tokenizer")
|
| 247 |
+
else:
|
| 248 |
+
# Fallback to eos_token_id
|
| 249 |
+
model.config.pad_token_id = tokenizer.eos_token_id
|
| 250 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 251 |
+
logger.debug("Set pad_token_id to eos_token_id")
|
| 252 |
+
|
| 253 |
+
# Set padding side to left for better batching
|
| 254 |
+
tokenizer.padding_side = "left"
|
| 255 |
+
logger.debug("Set tokenizer padding side to left")
|
| 256 |
+
|
| 257 |
+
except Exception as e:
|
| 258 |
+
logger.warning(f"Error configuring model settings: {e}")
|
| 259 |
+
|
| 260 |
+
# Log memory usage
|
| 261 |
+
try:
|
| 262 |
+
if hasattr(model, 'get_memory_footprint'):
|
| 263 |
+
memory = model.get_memory_footprint() / 1e6
|
| 264 |
+
logger.info(f"Model memory footprint: {memory:,.1f} MB")
|
| 265 |
+
except Exception as e:
|
| 266 |
+
logger.warning(f"Could not get memory footprint: {e}")
|
| 267 |
+
|
| 268 |
+
logger.info("Model loading completed successfully")
|
| 269 |
+
return model, tokenizer
|
| 270 |
+
|
| 271 |
+
except Exception as e:
|
| 272 |
+
logger.error(f"Unexpected error in load_model: {e}")
|
| 273 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 274 |
+
return None, None
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
# ===== TOOL DEFINITIONS =====
|
| 278 |
+
|
| 279 |
+
def calculate_numbers(operation: str, num1: float, num2: float) -> Dict[str, Any]:
|
| 280 |
+
"""
|
| 281 |
+
Sample tool to perform basic mathematical operations on two numbers.
|
| 282 |
+
|
| 283 |
+
Args:
|
| 284 |
+
operation: The operation to perform ('add', 'subtract', 'multiply', 'divide')
|
| 285 |
+
num1: First number
|
| 286 |
+
num2: Second number
|
| 287 |
+
|
| 288 |
+
Returns:
|
| 289 |
+
Dictionary with result and operation details
|
| 290 |
+
"""
|
| 291 |
+
try:
|
| 292 |
+
logger.debug(f"Calculating: {num1} {operation} {num2}")
|
| 293 |
+
|
| 294 |
+
# Validate inputs
|
| 295 |
+
if not isinstance(operation, str):
|
| 296 |
+
raise ValueError("Operation must be a string")
|
| 297 |
+
|
| 298 |
+
try:
|
| 299 |
+
num1, num2 = float(num1), float(num2)
|
| 300 |
+
except (ValueError, TypeError) as e:
|
| 301 |
+
logger.error(f"Invalid number format: num1={num1}, num2={num2}")
|
| 302 |
+
return {"error": f"Invalid number format: {str(e)}"}
|
| 303 |
+
|
| 304 |
+
operation = operation.lower().strip()
|
| 305 |
+
|
| 306 |
+
# Perform operation
|
| 307 |
+
if operation == 'add':
|
| 308 |
+
result = num1 + num2
|
| 309 |
+
elif operation == 'subtract':
|
| 310 |
+
result = num1 - num2
|
| 311 |
+
elif operation == 'multiply':
|
| 312 |
+
result = num1 * num2
|
| 313 |
+
elif operation == 'divide':
|
| 314 |
+
if num2 == 0:
|
| 315 |
+
logger.error("Division by zero attempted")
|
| 316 |
+
return {"error": "Division by zero is not allowed"}
|
| 317 |
+
result = num1 / num2
|
| 318 |
+
else:
|
| 319 |
+
logger.error(f"Unknown operation: {operation}")
|
| 320 |
+
return {"error": f"Unknown operation: {operation}. Supported: add, subtract, multiply, divide"}
|
| 321 |
+
|
| 322 |
+
response = {
|
| 323 |
+
"result": result,
|
| 324 |
+
"operation": operation,
|
| 325 |
+
"operands": [num1, num2],
|
| 326 |
+
"formatted": f"{num1} {operation} {num2} = {result}"
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
logger.debug(f"Calculation successful: {response['formatted']}")
|
| 330 |
+
return response
|
| 331 |
+
|
| 332 |
+
except Exception as e:
|
| 333 |
+
logger.error(f"Unexpected error in calculate_numbers: {e}")
|
| 334 |
+
return {"error": f"Calculation error: {str(e)}"}
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
# Tool registry
|
| 338 |
+
AVAILABLE_TOOLS = {
|
| 339 |
+
"calculate_numbers": {
|
| 340 |
+
"function": calculate_numbers,
|
| 341 |
+
"description": "Perform basic mathematical operations (add, subtract, multiply, divide) on two numbers",
|
| 342 |
+
"parameters": {
|
| 343 |
+
"operation": "The mathematical operation to perform",
|
| 344 |
+
"num1": "First number",
|
| 345 |
+
"num2": "Second number"
|
| 346 |
+
}
|
| 347 |
+
}
|
| 348 |
+
}
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def execute_tool_call(tool_name: str, **kwargs) -> Dict[str, Any]:
|
| 352 |
+
"""Execute a tool call with given parameters"""
|
| 353 |
+
try:
|
| 354 |
+
logger.info(f"Executing tool: {tool_name} with parameters: {kwargs}")
|
| 355 |
+
|
| 356 |
+
if not tool_name or not isinstance(tool_name, str):
|
| 357 |
+
logger.error(f"Invalid tool name: {tool_name}")
|
| 358 |
+
return {"error": "Invalid tool name"}
|
| 359 |
+
|
| 360 |
+
if tool_name not in AVAILABLE_TOOLS:
|
| 361 |
+
logger.error(f"Unknown tool: {tool_name}. Available: {list(AVAILABLE_TOOLS.keys())}")
|
| 362 |
+
return {"error": f"Unknown tool: {tool_name}"}
|
| 363 |
+
|
| 364 |
+
if not isinstance(kwargs, dict):
|
| 365 |
+
logger.error(f"Invalid parameters type: {type(kwargs)}")
|
| 366 |
+
return {"error": "Parameters must be a dictionary"}
|
| 367 |
+
|
| 368 |
+
tool_function = AVAILABLE_TOOLS[tool_name]["function"]
|
| 369 |
+
result = tool_function(**kwargs)
|
| 370 |
+
|
| 371 |
+
response = {
|
| 372 |
+
"tool_name": tool_name,
|
| 373 |
+
"parameters": kwargs,
|
| 374 |
+
"result": result
|
| 375 |
+
}
|
| 376 |
+
|
| 377 |
+
if "error" not in result:
|
| 378 |
+
logger.info(f"Tool execution successful: {tool_name}")
|
| 379 |
+
else:
|
| 380 |
+
logger.warning(f"Tool execution returned error: {result['error']}")
|
| 381 |
+
|
| 382 |
+
return response
|
| 383 |
+
|
| 384 |
+
except TypeError as e:
|
| 385 |
+
logger.error(f"Parameter error for tool '{tool_name}': {e}")
|
| 386 |
+
return {
|
| 387 |
+
"tool_name": tool_name,
|
| 388 |
+
"parameters": kwargs,
|
| 389 |
+
"error": f"Invalid parameters: {str(e)}"
|
| 390 |
+
}
|
| 391 |
+
except Exception as e:
|
| 392 |
+
logger.error(f"Tool execution failed: {str(e)}")
|
| 393 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 394 |
+
return {
|
| 395 |
+
"tool_name": tool_name,
|
| 396 |
+
"parameters": kwargs,
|
| 397 |
+
"error": f"Tool execution error: {str(e)}"
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def parse_tool_calls(text: str) -> list:
|
| 402 |
+
"""
|
| 403 |
+
Parse tool calls from model output with comprehensive error handling.
|
| 404 |
+
Supports both formats:
|
| 405 |
+
- [TOOL_CALL:tool_name(param1=value1, param2=value2)]
|
| 406 |
+
- <tool_call>{"name": "tool_name", "parameters": {"param1": "value1", "param2": "value2"}}</tool_call>
|
| 407 |
+
"""
|
| 408 |
+
try:
|
| 409 |
+
if not text or not isinstance(text, str):
|
| 410 |
+
logger.warning("Invalid text input for tool call parsing")
|
| 411 |
+
return []
|
| 412 |
+
|
| 413 |
+
tool_calls = []
|
| 414 |
+
logger.debug(f"Parsing tool calls from text: {text[:200]}...")
|
| 415 |
+
|
| 416 |
+
# Pattern for both formats
|
| 417 |
+
pattern = r'(\[TOOL_CALL:(\w+)\((.*?)\)\]|<tool_call>\s*{"name":\s*"(\w+)",\s*"parameters":\s*{([^}]*)}\s*}\s*</tool_call>)'
|
| 418 |
+
matches = re.findall(pattern, text)
|
| 419 |
+
logger.debug(f"Found {len(matches)} potential tool call matches")
|
| 420 |
+
|
| 421 |
+
for i, match in enumerate(matches):
|
| 422 |
+
try:
|
| 423 |
+
full_match, old_tool_name, old_params, json_tool_name, json_params = match
|
| 424 |
+
|
| 425 |
+
# Determine which format was matched
|
| 426 |
+
if old_tool_name: # Old format: [TOOL_CALL:tool_name(params)]
|
| 427 |
+
tool_name = old_tool_name
|
| 428 |
+
params_str = old_params
|
| 429 |
+
original_call = f"[TOOL_CALL:{tool_name}({params_str})]"
|
| 430 |
+
|
| 431 |
+
params = {}
|
| 432 |
+
if params_str.strip():
|
| 433 |
+
param_pairs = params_str.split(',')
|
| 434 |
+
for pair in param_pairs:
|
| 435 |
+
try:
|
| 436 |
+
if '=' in pair:
|
| 437 |
+
key, value = pair.split('=', 1)
|
| 438 |
+
key = key.strip()
|
| 439 |
+
value = value.strip().strip('"\'') # Remove quotes
|
| 440 |
+
params[key] = value
|
| 441 |
+
except Exception as e:
|
| 442 |
+
logger.warning(f"Error parsing parameter pair '{pair}': {e}")
|
| 443 |
+
|
| 444 |
+
logger.debug(f"Parsed old format tool call: {tool_name} with params: {params}")
|
| 445 |
+
|
| 446 |
+
elif json_tool_name: # JSON format: <tool_call>...</tool_call>
|
| 447 |
+
tool_name = json_tool_name
|
| 448 |
+
params_str = json_params
|
| 449 |
+
original_call = full_match
|
| 450 |
+
|
| 451 |
+
params = {}
|
| 452 |
+
if params_str.strip():
|
| 453 |
+
# Parse JSON-like parameters
|
| 454 |
+
param_pairs = params_str.split(',')
|
| 455 |
+
for pair in param_pairs:
|
| 456 |
+
try:
|
| 457 |
+
if ':' in pair:
|
| 458 |
+
key, value = pair.split(':', 1)
|
| 459 |
+
key = key.strip().strip('"\'') # Remove quotes and whitespace
|
| 460 |
+
value = value.strip().strip('"\'') # Remove quotes and whitespace
|
| 461 |
+
params[key] = value
|
| 462 |
+
except Exception as e:
|
| 463 |
+
logger.warning(f"Error parsing JSON parameter pair '{pair}': {e}")
|
| 464 |
+
|
| 465 |
+
logger.debug(f"Parsed JSON format tool call: {tool_name} with params: {params}")
|
| 466 |
+
|
| 467 |
+
else:
|
| 468 |
+
logger.warning(f"Could not determine tool call format for match {i}")
|
| 469 |
+
continue
|
| 470 |
+
|
| 471 |
+
# Validate tool call
|
| 472 |
+
if tool_name and isinstance(params, dict):
|
| 473 |
+
tool_calls.append({
|
| 474 |
+
"tool_name": tool_name,
|
| 475 |
+
"parameters": params,
|
| 476 |
+
"original_call": original_call
|
| 477 |
+
})
|
| 478 |
+
else:
|
| 479 |
+
logger.warning(f"Invalid tool call data: tool_name='{tool_name}', params={params}")
|
| 480 |
+
|
| 481 |
+
except Exception as e:
|
| 482 |
+
logger.error(f"Error parsing tool call match {i}: {e}")
|
| 483 |
+
continue
|
| 484 |
+
|
| 485 |
+
logger.info(f"Successfully parsed {len(tool_calls)} tool calls")
|
| 486 |
+
return tool_calls
|
| 487 |
+
|
| 488 |
+
except Exception as e:
|
| 489 |
+
logger.error(f"Unexpected error in parse_tool_calls: {e}")
|
| 490 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 491 |
+
return []
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
def process_tool_calls(text: str) -> str:
|
| 495 |
+
"""Process tool calls in the generated text and replace with results"""
|
| 496 |
+
try:
|
| 497 |
+
if not text:
|
| 498 |
+
logger.warning("Empty text provided to process_tool_calls")
|
| 499 |
+
return text
|
| 500 |
+
|
| 501 |
+
logger.debug("Processing tool calls in generated text")
|
| 502 |
+
tool_calls = parse_tool_calls(text)
|
| 503 |
+
|
| 504 |
+
if not tool_calls:
|
| 505 |
+
logger.debug("No tool calls found in text")
|
| 506 |
+
return text
|
| 507 |
+
|
| 508 |
+
processed_text = text
|
| 509 |
+
successful_calls = 0
|
| 510 |
+
|
| 511 |
+
for i, tool_call in enumerate(tool_calls):
|
| 512 |
+
try:
|
| 513 |
+
tool_name = tool_call["tool_name"]
|
| 514 |
+
parameters = tool_call["parameters"]
|
| 515 |
+
original_call = tool_call["original_call"]
|
| 516 |
+
|
| 517 |
+
logger.debug(f"Processing tool call {i + 1}/{len(tool_calls)}: {tool_name}")
|
| 518 |
+
|
| 519 |
+
# Validate parameters before execution
|
| 520 |
+
if not isinstance(parameters, dict):
|
| 521 |
+
logger.error(f"Invalid parameters for tool {tool_name}: {parameters}")
|
| 522 |
+
replacement = f"[TOOL_ERROR: Invalid parameters for tool {tool_name}]"
|
| 523 |
+
else:
|
| 524 |
+
# Execute tool
|
| 525 |
+
result = execute_tool_call(tool_name, **parameters)
|
| 526 |
+
|
| 527 |
+
# Create replacement text
|
| 528 |
+
if "error" in result:
|
| 529 |
+
replacement = f"[TOOL_ERROR: {result['error']}]"
|
| 530 |
+
logger.warning(f"Tool call failed: {result['error']}")
|
| 531 |
+
else:
|
| 532 |
+
if "result" in result["result"] and "formatted" in result["result"]:
|
| 533 |
+
replacement = f"[TOOL_RESULT: {result['result']['formatted']}]"
|
| 534 |
+
elif "result" in result:
|
| 535 |
+
replacement = f"[TOOL_RESULT: {result['result']}]"
|
| 536 |
+
else:
|
| 537 |
+
replacement = f"[TOOL_RESULT: Success]"
|
| 538 |
+
|
| 539 |
+
successful_calls += 1
|
| 540 |
+
logger.debug(f"Tool call successful: {replacement}")
|
| 541 |
+
|
| 542 |
+
# Replace tool call with result
|
| 543 |
+
processed_text = processed_text.replace(original_call, replacement)
|
| 544 |
+
|
| 545 |
+
except Exception as e:
|
| 546 |
+
logger.error(f"Error processing tool call {i + 1}: {e}")
|
| 547 |
+
tool_name = tool_call.get("tool_name", "unknown")
|
| 548 |
+
original_call = tool_call.get("original_call", "")
|
| 549 |
+
replacement = f"[TOOL_ERROR: Failed to process tool call: {str(e)}]"
|
| 550 |
+
if original_call:
|
| 551 |
+
processed_text = processed_text.replace(original_call, replacement)
|
| 552 |
+
|
| 553 |
+
logger.info(f"Processed {len(tool_calls)} tool calls ({successful_calls} successful)")
|
| 554 |
+
return processed_text
|
| 555 |
+
|
| 556 |
+
except Exception as e:
|
| 557 |
+
logger.error(f"Unexpected error in process_tool_calls: {e}")
|
| 558 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 559 |
+
return text # Return original text if processing fails
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
def monitor_memory():
|
| 563 |
+
"""Monitor and log memory usage"""
|
| 564 |
+
try:
|
| 565 |
+
if torch.cuda.is_available():
|
| 566 |
+
allocated = torch.cuda.memory_allocated() / 1e9
|
| 567 |
+
cached = torch.cuda.memory_reserved() / 1e9
|
| 568 |
+
max_allocated = torch.cuda.max_memory_allocated() / 1e9
|
| 569 |
+
|
| 570 |
+
logger.info(
|
| 571 |
+
f"GPU Memory - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB, Max: {max_allocated:.2f}GB")
|
| 572 |
+
|
| 573 |
+
# Log warning if memory usage is high
|
| 574 |
+
total_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
|
| 575 |
+
if allocated / total_memory > 0.9:
|
| 576 |
+
logger.warning(f"High GPU memory usage: {allocated / total_memory * 100:.1f}%")
|
| 577 |
+
|
| 578 |
+
# Clean up cache if needed
|
| 579 |
+
torch.cuda.empty_cache()
|
| 580 |
+
else:
|
| 581 |
+
logger.debug("CUDA not available, skipping GPU memory monitoring")
|
| 582 |
+
|
| 583 |
+
# Clean up Python memory
|
| 584 |
+
gc.collect()
|
| 585 |
+
logger.debug("Resources cleaned up successfully")
|
| 586 |
+
|
| 587 |
+
except Exception as e:
|
| 588 |
+
logger.error(f"Error monitoring memory: {e}")
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
def get_model_info() -> Dict[str, Any]:
|
| 592 |
+
"""Get information about the loaded model"""
|
| 593 |
+
try:
|
| 594 |
+
if model is None:
|
| 595 |
+
return {"status": "not_loaded"}
|
| 596 |
+
|
| 597 |
+
info = {
|
| 598 |
+
"status": "loaded",
|
| 599 |
+
"model_id": MODEL_ID,
|
| 600 |
+
"device": str(model.device) if hasattr(model, 'device') else "unknown",
|
| 601 |
+
"dtype": str(model.dtype) if hasattr(model, 'dtype') else "unknown"
|
| 602 |
+
}
|
| 603 |
+
|
| 604 |
+
# Add memory info if available
|
| 605 |
+
if hasattr(model, 'get_memory_footprint'):
|
| 606 |
+
try:
|
| 607 |
+
info["memory_footprint_mb"] = model.get_memory_footprint() / 1e6
|
| 608 |
+
except:
|
| 609 |
+
pass
|
| 610 |
+
|
| 611 |
+
# Add GPU info if available
|
| 612 |
+
if torch.cuda.is_available():
|
| 613 |
+
info["gpu_count"] = torch.cuda.device_count()
|
| 614 |
+
info["current_gpu"] = torch.cuda.current_device()
|
| 615 |
+
info["gpu_memory_allocated"] = torch.cuda.memory_allocated() / 1e9
|
| 616 |
+
info["gpu_memory_cached"] = torch.cuda.memory_reserved() / 1e9
|
| 617 |
+
|
| 618 |
+
return info
|
| 619 |
+
except Exception as e:
|
| 620 |
+
logger.error(f"Error getting model info: {e}")
|
| 621 |
+
return {"status": "error", "error": str(e)}
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
def health_check() -> Dict[str, Any]:
|
| 625 |
+
"""Perform a health check of the system"""
|
| 626 |
+
try:
|
| 627 |
+
health_status = {
|
| 628 |
+
"timestamp": time.time(),
|
| 629 |
+
"torch_version": torch.__version__,
|
| 630 |
+
"cuda_available": torch.cuda.is_available(),
|
| 631 |
+
"model_loaded": model is not None,
|
| 632 |
+
"tokenizer_loaded": tokenizer is not None,
|
| 633 |
+
}
|
| 634 |
+
|
| 635 |
+
if torch.cuda.is_available():
|
| 636 |
+
health_status.update({
|
| 637 |
+
"cuda_version": torch.version.cuda,
|
| 638 |
+
"gpu_count": torch.cuda.device_count(),
|
| 639 |
+
"gpu_memory_total": torch.cuda.get_device_properties(0).total_memory / 1e9,
|
| 640 |
+
"gpu_memory_available": (torch.cuda.get_device_properties(
|
| 641 |
+
0).total_memory - torch.cuda.memory_allocated()) / 1e9
|
| 642 |
+
})
|
| 643 |
+
|
| 644 |
+
# Test a simple generation if model is loaded
|
| 645 |
+
if model is not None and tokenizer is not None:
|
| 646 |
+
try:
|
| 647 |
+
test_response = generate_response(
|
| 648 |
+
"You are a helpful assistant.",
|
| 649 |
+
"Say hello",
|
| 650 |
+
"Optimized for Speed"
|
| 651 |
+
)
|
| 652 |
+
health_status["test_generation"] = "success" if test_response else "failed"
|
| 653 |
+
except Exception as e:
|
| 654 |
+
health_status["test_generation"] = f"error: {str(e)}"
|
| 655 |
+
|
| 656 |
+
logger.info(f"Health check completed: {health_status}")
|
| 657 |
+
return health_status
|
| 658 |
+
except Exception as e:
|
| 659 |
+
logger.error(f"Error during health check: {e}")
|
| 660 |
+
return {"status": "error", "error": str(e)}
|
| 661 |
+
|
| 662 |
+
|
| 663 |
+
def validate_inputs(system_prompt: str, user_input: str, config_name: str) -> bool:
|
| 664 |
+
"""Validate inputs for generate_response"""
|
| 665 |
+
try:
|
| 666 |
+
if not isinstance(system_prompt, str) or not system_prompt.strip():
|
| 667 |
+
logger.error("System prompt must be a non-empty string")
|
| 668 |
+
return False
|
| 669 |
+
|
| 670 |
+
if not isinstance(user_input, str) or not user_input.strip():
|
| 671 |
+
logger.error("User input must be a non-empty string")
|
| 672 |
+
return False
|
| 673 |
+
|
| 674 |
+
if not validate_config(config_name):
|
| 675 |
+
return False
|
| 676 |
+
|
| 677 |
+
# Check input length
|
| 678 |
+
total_length = len(system_prompt) + len(user_input)
|
| 679 |
+
if total_length > 50000: # Reasonable limit
|
| 680 |
+
logger.warning(f"Input length is very long: {total_length} characters")
|
| 681 |
+
|
| 682 |
+
return True
|
| 683 |
+
except Exception as e:
|
| 684 |
+
logger.error(f"Error validating inputs: {e}")
|
| 685 |
+
return False
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
def generate_response(system_prompt: str, user_input: str, config_name: str = "Middle-ground") -> Optional[str]:
|
| 689 |
+
"""
|
| 690 |
+
Run inference with comprehensive error handling and logging.
|
| 691 |
+
|
| 692 |
+
Args:
|
| 693 |
+
system_prompt: System message/prompt
|
| 694 |
+
user_input: User's input message
|
| 695 |
+
config_name: Name of the inference configuration to use
|
| 696 |
+
|
| 697 |
+
Returns:
|
| 698 |
+
Generated response text, or None if generation failed
|
| 699 |
+
"""
|
| 700 |
+
try:
|
| 701 |
+
logger.info(f"Starting response generation with config: {config_name}")
|
| 702 |
+
|
| 703 |
+
# Validate inputs
|
| 704 |
+
if not validate_inputs(system_prompt, user_input, config_name):
|
| 705 |
+
logger.error("Input validation failed")
|
| 706 |
+
return None
|
| 707 |
+
|
| 708 |
+
# Load model
|
| 709 |
+
model, tokenizer = load_model()
|
| 710 |
+
if model is None or tokenizer is None:
|
| 711 |
+
logger.error("Failed to load model or tokenizer")
|
| 712 |
+
return None
|
| 713 |
+
|
| 714 |
+
# Get configuration
|
| 715 |
+
config = INFERENCE_CONFIGS[config_name]
|
| 716 |
+
logger.debug(f"Using config: {config}")
|
| 717 |
+
|
| 718 |
+
# Prepare messages
|
| 719 |
+
input_messages = [
|
| 720 |
+
{"role": "system", "content": system_prompt},
|
| 721 |
+
{"role": "user", "content": user_input}
|
| 722 |
+
]
|
| 723 |
+
|
| 724 |
+
# Apply chat template
|
| 725 |
+
try:
|
| 726 |
+
prompt_text = tokenizer.apply_chat_template(
|
| 727 |
+
input_messages,
|
| 728 |
+
tokenize=False,
|
| 729 |
+
add_generation_prompt=True
|
| 730 |
+
)
|
| 731 |
+
logger.debug("Chat template applied successfully")
|
| 732 |
+
except Exception as e:
|
| 733 |
+
logger.error(f"Failed to apply chat template: {e}")
|
| 734 |
+
# Fallback to simple concatenation
|
| 735 |
+
prompt_text = f"System: {system_prompt}\nUser: {user_input}\nAssistant:"
|
| 736 |
+
logger.info("Using fallback prompt format")
|
| 737 |
+
|
| 738 |
+
# Tokenize input
|
| 739 |
+
try:
|
| 740 |
+
input_length = len(tokenizer.encode(prompt_text))
|
| 741 |
+
context_length = min(input_length, 3584) # Leave room for generation
|
| 742 |
+
|
| 743 |
+
inputs = tokenizer(
|
| 744 |
+
prompt_text,
|
| 745 |
+
return_tensors="pt",
|
| 746 |
+
truncation=True,
|
| 747 |
+
max_length=context_length,
|
| 748 |
+
padding=False
|
| 749 |
+
).to(model.device)
|
| 750 |
+
|
| 751 |
+
logger.debug(f"Input tokenized: {inputs['input_ids'].shape[1]} tokens")
|
| 752 |
+
|
| 753 |
+
except Exception as e:
|
| 754 |
+
logger.error(f"Failed to tokenize input: {e}")
|
| 755 |
+
return None
|
| 756 |
+
|
| 757 |
+
# Calculate generation parameters
|
| 758 |
+
actual_input_length = inputs['input_ids'].shape[1]
|
| 759 |
+
max_new_tokens = min(config["max_new_tokens_cap"], 4096 - actual_input_length - 10)
|
| 760 |
+
max_new_tokens = max(config["min_tokens"], max_new_tokens)
|
| 761 |
+
|
| 762 |
+
logger.debug(f"Generation params - Input length: {actual_input_length}, Max new tokens: {max_new_tokens}")
|
| 763 |
+
|
| 764 |
+
# Monitor memory before generation
|
| 765 |
+
monitor_memory()
|
| 766 |
+
|
| 767 |
+
# Generate response
|
| 768 |
+
try:
|
| 769 |
+
with torch.no_grad():
|
| 770 |
+
start_time = time.time()
|
| 771 |
+
|
| 772 |
+
generation_kwargs = {
|
| 773 |
+
"do_sample": config["do_sample"],
|
| 774 |
+
"temperature": config["temperature"],
|
| 775 |
+
"top_p": config["top_p"],
|
| 776 |
+
"use_cache": config["use_cache"],
|
| 777 |
+
"max_new_tokens": max_new_tokens,
|
| 778 |
+
"pad_token_id": tokenizer.pad_token_id,
|
| 779 |
+
"eos_token_id": tokenizer.eos_token_id,
|
| 780 |
+
"output_attentions": False,
|
| 781 |
+
"output_hidden_states": False,
|
| 782 |
+
"return_dict_in_generate": False,
|
| 783 |
+
}
|
| 784 |
+
|
| 785 |
+
outputs = model.generate(**inputs, **generation_kwargs)
|
| 786 |
+
inference_time = time.time() - start_time
|
| 787 |
+
|
| 788 |
+
logger.info(f"Generation completed in {inference_time:.2f} seconds")
|
| 789 |
+
|
| 790 |
+
except torch.cuda.OutOfMemoryError:
|
| 791 |
+
logger.error("CUDA out of memory during generation")
|
| 792 |
+
# Try to free memory
|
| 793 |
+
gc.collect()
|
| 794 |
+
torch.cuda.empty_cache()
|
| 795 |
+
return None
|
| 796 |
+
except Exception as e:
|
| 797 |
+
logger.error(f"Generation failed: {e}")
|
| 798 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 799 |
+
return None
|
| 800 |
+
|
| 801 |
+
# Monitor memory after generation
|
| 802 |
+
monitor_memory()
|
| 803 |
+
|
| 804 |
+
# Clean up GPU memory
|
| 805 |
+
try:
|
| 806 |
+
gc.collect()
|
| 807 |
+
if torch.cuda.is_available():
|
| 808 |
+
torch.cuda.empty_cache()
|
| 809 |
+
except Exception as e:
|
| 810 |
+
logger.warning(f"Error during cleanup: {e}")
|
| 811 |
+
|
| 812 |
+
# Decode response
|
| 813 |
+
try:
|
| 814 |
+
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 815 |
+
|
| 816 |
+
# Extract generated response
|
| 817 |
+
if prompt_text in full_text:
|
| 818 |
+
response_start = full_text.find(prompt_text) + len(prompt_text)
|
| 819 |
+
generated_response = full_text[response_start:].strip()
|
| 820 |
+
else:
|
| 821 |
+
# More robust fallback
|
| 822 |
+
generated_response = full_text.strip()
|
| 823 |
+
try:
|
| 824 |
+
# Look for common assistant/response indicators
|
| 825 |
+
response_indicators = ["Assistant:", "<|assistant|>", "[/INST]", "Response:"]
|
| 826 |
+
for indicator in response_indicators:
|
| 827 |
+
if indicator in full_text:
|
| 828 |
+
parts = full_text.split(indicator)
|
| 829 |
+
if len(parts) > 1:
|
| 830 |
+
generated_response = parts[-1].strip()
|
| 831 |
+
break
|
| 832 |
+
|
| 833 |
+
# If no indicator found, try to remove the input part
|
| 834 |
+
if user_input in full_text:
|
| 835 |
+
parts = full_text.split(user_input)
|
| 836 |
+
if len(parts) > 1:
|
| 837 |
+
generated_response = parts[-1].strip()
|
| 838 |
+
|
| 839 |
+
except Exception as extract_error:
|
| 840 |
+
logger.warning(f"Error extracting response: {extract_error}")
|
| 841 |
+
generated_response = full_text.strip()
|
| 842 |
+
|
| 843 |
+
logger.debug(f"Extracted response: {generated_response[:100]}...")
|
| 844 |
+
|
| 845 |
+
except Exception as e:
|
| 846 |
+
logger.error(f"Failed to decode response: {e}")
|
| 847 |
+
return None
|
| 848 |
+
|
| 849 |
+
# Process tool calls
|
| 850 |
+
try:
|
| 851 |
+
processed_response = process_tool_calls(generated_response)
|
| 852 |
+
logger.debug("Tool call processing completed")
|
| 853 |
+
except Exception as e:
|
| 854 |
+
logger.error(f"Error processing tool calls: {e}")
|
| 855 |
+
processed_response = generated_response # Use original if tool processing fails
|
| 856 |
+
|
| 857 |
+
# Log final statistics
|
| 858 |
+
input_tokens = inputs['input_ids'].shape[1]
|
| 859 |
+
output_tokens = outputs.shape[1] - input_tokens
|
| 860 |
+
logger.info(
|
| 861 |
+
f"Generation stats - Input tokens: {input_tokens}, Output tokens: {output_tokens}, Time: {inference_time:.2f}s")
|
| 862 |
+
|
| 863 |
+
logger.info("Response generation completed successfully")
|
| 864 |
+
return processed_response
|
| 865 |
+
|
| 866 |
+
except Exception as e:
|
| 867 |
+
logger.error(f"Unexpected error in generate_response: {e}")
|
| 868 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 869 |
+
return None
|
| 870 |
+
|
| 871 |
+
|
| 872 |
+
def safe_generate_response(system_prompt: str, user_input: str, config_name: str = "Middle-ground",
|
| 873 |
+
max_retries: int = 2) -> Optional[str]:
|
| 874 |
+
"""
|
| 875 |
+
Generate response with retry logic and fallback options
|
| 876 |
+
|
| 877 |
+
Args:
|
| 878 |
+
system_prompt: System message/prompt
|
| 879 |
+
user_input: User's input message
|
| 880 |
+
config_name: Name of the inference configuration to use
|
| 881 |
+
max_retries: Maximum number of retry attempts
|
| 882 |
+
|
| 883 |
+
Returns:
|
| 884 |
+
Generated response text, or None if all attempts failed
|
| 885 |
+
"""
|
| 886 |
+
for attempt in range(max_retries + 1):
|
| 887 |
+
try:
|
| 888 |
+
logger.info(f"Generation attempt {attempt + 1}/{max_retries + 1}")
|
| 889 |
+
|
| 890 |
+
response = generate_response(system_prompt, user_input, config_name)
|
| 891 |
+
if response is not None:
|
| 892 |
+
logger.info(f"Generation successful on attempt {attempt + 1}")
|
| 893 |
+
return response
|
| 894 |
+
|
| 895 |
+
if attempt < max_retries:
|
| 896 |
+
logger.warning(f"Generation failed on attempt {attempt + 1}, retrying...")
|
| 897 |
+
# Clean up before retry
|
| 898 |
+
gc.collect()
|
| 899 |
+
if torch.cuda.is_available():
|
| 900 |
+
torch.cuda.empty_cache()
|
| 901 |
+
time.sleep(1) # Brief pause before retry
|
| 902 |
+
|
| 903 |
+
except Exception as e:
|
| 904 |
+
logger.error(f"Error on generation attempt {attempt + 1}: {e}")
|
| 905 |
+
if attempt < max_retries:
|
| 906 |
+
logger.info("Cleaning up and retrying...")
|
| 907 |
+
try:
|
| 908 |
+
gc.collect()
|
| 909 |
+
if torch.cuda.is_available():
|
| 910 |
+
torch.cuda.empty_cache()
|
| 911 |
+
except:
|
| 912 |
+
pass
|
| 913 |
+
time.sleep(2) # Longer pause after error
|
| 914 |
+
|
| 915 |
+
logger.error(f"All {max_retries + 1} generation attempts failed")
|
| 916 |
+
return None
|
| 917 |
+
|
| 918 |
+
|
| 919 |
+
# Context manager for safe model operations
|
| 920 |
+
class ModelContext:
|
| 921 |
+
"""Context manager for safe model operations with automatic cleanup"""
|
| 922 |
+
|
| 923 |
+
def __init__(self, auto_cleanup: bool = True):
|
| 924 |
+
self.auto_cleanup = auto_cleanup
|
| 925 |
+
self.original_model = None
|
| 926 |
+
self.original_tokenizer = None
|
| 927 |
+
|
| 928 |
+
def __enter__(self):
|
| 929 |
+
global model, tokenizer
|
| 930 |
+
self.original_model = model
|
| 931 |
+
self.original_tokenizer = tokenizer
|
| 932 |
+
logger.debug("Entered model context")
|
| 933 |
+
return self
|
| 934 |
+
|
| 935 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 936 |
+
if exc_type is not None:
|
| 937 |
+
logger.error(f"Exception in model context: {exc_type.__name__}: {exc_val}")
|
| 938 |
+
|
| 939 |
+
if self.auto_cleanup:
|
| 940 |
+
try:
|
| 941 |
+
gc.collect()
|
| 942 |
+
if torch.cuda.is_available():
|
| 943 |
+
torch.cuda.empty_cache()
|
| 944 |
+
logger.debug("Model context cleanup completed")
|
| 945 |
+
except Exception as e:
|
| 946 |
+
logger.warning(f"Error during model context cleanup: {e}")
|
| 947 |
+
|
| 948 |
+
logger.debug("Exited model context")
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
def cleanup_resources():
|
| 952 |
+
"""Clean up model resources"""
|
| 953 |
+
global model, tokenizer
|
| 954 |
+
try:
|
| 955 |
+
if model is not None:
|
| 956 |
+
del model
|
| 957 |
+
model = None
|
| 958 |
+
logger.info("Model removed from memory")
|
| 959 |
+
if tokenizer is not None:
|
| 960 |
+
del tokenizer
|
| 961 |
+
tokenizer = None
|
| 962 |
+
logger.info("Tokenizer removed from memory")
|
| 963 |
+
|
| 964 |
+
# Clean up GPU memory
|
| 965 |
+
gc.collect()
|
| 966 |
+
if torch.cuda.is_available():
|
| 967 |
+
torch.cuda.empty_cache()
|
| 968 |
+
torch.cuda.synchronize()
|
| 969 |
+
logger.info("GPU memory cleaned up")
|
| 970 |
+
|
| 971 |
+
logger.info("Resource cleanup completed")
|
| 972 |
+
|
| 973 |
+
except Exception as e:
|
| 974 |
+
logger.error(f"Error during resource cleanup: {e}")
|
| 975 |
+
|
| 976 |
+
|
| 977 |
+
def unload_model():
|
| 978 |
+
"""Explicitly unload the model and tokenizer"""
|
| 979 |
+
try:
|
| 980 |
+
logger.info("Unloading model and tokenizer...")
|
| 981 |
+
cleanup_resources()
|
| 982 |
+
logger.info("Model and tokenizer unloaded successfully")
|
| 983 |
+
return True
|
| 984 |
+
except Exception as e:
|
| 985 |
+
logger.error(f"Error unloading model: {e}")
|
| 986 |
+
return False
|
| 987 |
+
|
| 988 |
+
|
| 989 |
+
def reload_model():
|
| 990 |
+
"""Reload the model and tokenizer"""
|
| 991 |
+
try:
|
| 992 |
+
logger.info("Reloading model and tokenizer...")
|
| 993 |
+
# First clean up existing resources
|
| 994 |
+
cleanup_resources()
|
| 995 |
+
time.sleep(1) # Brief pause
|
| 996 |
+
|
| 997 |
+
# Load fresh model and tokenizer
|
| 998 |
+
model, tokenizer = load_model()
|
| 999 |
+
if model is not None and tokenizer is not None:
|
| 1000 |
+
logger.info("Model and tokenizer reloaded successfully")
|
| 1001 |
+
return True
|
| 1002 |
+
else:
|
| 1003 |
+
logger.error("Failed to reload model and tokenizer")
|
| 1004 |
+
return False
|
| 1005 |
+
except Exception as e:
|
| 1006 |
+
logger.error(f"Error reloading model: {e}")
|
| 1007 |
+
return False
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
def get_available_tools() -> Dict[str, Any]:
|
| 1011 |
+
"""Get information about available tools"""
|
| 1012 |
+
try:
|
| 1013 |
+
return {
|
| 1014 |
+
"tools": AVAILABLE_TOOLS,
|
| 1015 |
+
"count": len(AVAILABLE_TOOLS),
|
| 1016 |
+
"tool_names": list(AVAILABLE_TOOLS.keys())
|
| 1017 |
+
}
|
| 1018 |
+
except Exception as e:
|
| 1019 |
+
logger.error(f"Error getting available tools: {e}")
|
| 1020 |
+
return {"error": str(e)}
|
| 1021 |
+
|
| 1022 |
+
|
| 1023 |
+
def add_tool(tool_name: str, tool_function, description: str, parameters: Dict[str, str]):
|
| 1024 |
+
"""Add a new tool to the registry"""
|
| 1025 |
+
try:
|
| 1026 |
+
if not tool_name or not isinstance(tool_name, str):
|
| 1027 |
+
raise ValueError("Tool name must be a non-empty string")
|
| 1028 |
+
|
| 1029 |
+
if not callable(tool_function):
|
| 1030 |
+
raise ValueError("Tool function must be callable")
|
| 1031 |
+
|
| 1032 |
+
if tool_name in AVAILABLE_TOOLS:
|
| 1033 |
+
logger.warning(f"Tool '{tool_name}' already exists, replacing...")
|
| 1034 |
+
|
| 1035 |
+
AVAILABLE_TOOLS[tool_name] = {
|
| 1036 |
+
"function": tool_function,
|
| 1037 |
+
"description": description,
|
| 1038 |
+
"parameters": parameters or {}
|
| 1039 |
+
}
|
| 1040 |
+
|
| 1041 |
+
logger.info(f"Tool '{tool_name}' added successfully")
|
| 1042 |
+
return True
|
| 1043 |
+
except Exception as e:
|
| 1044 |
+
logger.error(f"Error adding tool '{tool_name}': {e}")
|
| 1045 |
+
return False
|
| 1046 |
+
|
| 1047 |
+
|
| 1048 |
+
def remove_tool(tool_name: str):
|
| 1049 |
+
"""Remove a tool from the registry"""
|
| 1050 |
+
try:
|
| 1051 |
+
if tool_name not in AVAILABLE_TOOLS:
|
| 1052 |
+
logger.warning(f"Tool '{tool_name}' not found")
|
| 1053 |
+
return False
|
| 1054 |
+
|
| 1055 |
+
del AVAILABLE_TOOLS[tool_name]
|
| 1056 |
+
logger.info(f"Tool '{tool_name}' removed successfully")
|
| 1057 |
+
return True
|
| 1058 |
+
except Exception as e:
|
| 1059 |
+
logger.error(f"Error removing tool '{tool_name}': {e}")
|
| 1060 |
+
return False
|
| 1061 |
+
|
| 1062 |
+
|
| 1063 |
+
# Example usage and testing functions
|
| 1064 |
+
def run_example():
|
| 1065 |
+
"""Run an example to test the system"""
|
| 1066 |
+
try:
|
| 1067 |
+
logger.info("Running example test")
|
| 1068 |
+
|
| 1069 |
+
# Test health check
|
| 1070 |
+
health = health_check()
|
| 1071 |
+
logger.info(f"System health: {health}")
|
| 1072 |
+
|
| 1073 |
+
# Test model loading
|
| 1074 |
+
model_obj, tokenizer_obj = load_model()
|
| 1075 |
+
if model_obj is None or tokenizer_obj is None:
|
| 1076 |
+
logger.error("Failed to load model for example")
|
| 1077 |
+
return False
|
| 1078 |
+
|
| 1079 |
+
# Test generation
|
| 1080 |
+
with ModelContext():
|
| 1081 |
+
response = safe_generate_response(
|
| 1082 |
+
"You are a helpful mathematical assistant.",
|
| 1083 |
+
"What is 15 + 25? Use the calculate_numbers tool.",
|
| 1084 |
+
"Optimized for Speed"
|
| 1085 |
+
)
|
| 1086 |
+
|
| 1087 |
+
if response:
|
| 1088 |
+
logger.info(f"Example response: {response}")
|
| 1089 |
+
return True
|
| 1090 |
+
else:
|
| 1091 |
+
logger.error("Example generation failed")
|
| 1092 |
+
return False
|
| 1093 |
+
|
| 1094 |
+
except Exception as e:
|
| 1095 |
+
logger.error(f"Error in example: {e}")
|
| 1096 |
+
return False
|
| 1097 |
+
|
| 1098 |
+
|
| 1099 |
+
def run_batch_test():
|
| 1100 |
+
"""Run batch test with multiple inputs"""
|
| 1101 |
+
try:
|
| 1102 |
+
logger.info("Running batch test")
|
| 1103 |
+
|
| 1104 |
+
test_cases = [
|
| 1105 |
+
{
|
| 1106 |
+
"system": "You are a helpful assistant.",
|
| 1107 |
+
"user": "Hello, how are you?",
|
| 1108 |
+
"config": "Optimized for Speed"
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"system": "You are a mathematical assistant.",
|
| 1112 |
+
"user": "Calculate 10 * 5 using the calculate_numbers tool.",
|
| 1113 |
+
"config": "Middle-ground"
|
| 1114 |
+
},
|
| 1115 |
+
{
|
| 1116 |
+
"system": "You are a helpful assistant.",
|
| 1117 |
+
"user": "Explain the concept of machine learning in simple terms.",
|
| 1118 |
+
"config": "Full Capacity"
|
| 1119 |
+
}
|
| 1120 |
+
]
|
| 1121 |
+
|
| 1122 |
+
results = []
|
| 1123 |
+
for i, test_case in enumerate(test_cases):
|
| 1124 |
+
logger.info(f"Running test case {i + 1}/{len(test_cases)}")
|
| 1125 |
+
|
| 1126 |
+
with ModelContext():
|
| 1127 |
+
response = safe_generate_response(
|
| 1128 |
+
test_case["system"],
|
| 1129 |
+
test_case["user"],
|
| 1130 |
+
test_case["config"]
|
| 1131 |
+
)
|
| 1132 |
+
|
| 1133 |
+
results.append({
|
| 1134 |
+
"test_case": i + 1,
|
| 1135 |
+
"success": response is not None,
|
| 1136 |
+
"response": response[:100] + "..." if response and len(response) > 100 else response
|
| 1137 |
+
})
|
| 1138 |
+
|
| 1139 |
+
success_count = sum(1 for r in results if r["success"])
|
| 1140 |
+
logger.info(f"Batch test completed: {success_count}/{len(test_cases)} successful")
|
| 1141 |
+
|
| 1142 |
+
return results
|
| 1143 |
+
|
| 1144 |
+
except Exception as e:
|
| 1145 |
+
logger.error(f"Error in batch test: {e}")
|
| 1146 |
+
return []
|
| 1147 |
+
|
| 1148 |
+
|
| 1149 |
+
def benchmark_generation(num_runs: int = 5):
|
| 1150 |
+
"""Benchmark generation performance"""
|
| 1151 |
+
try:
|
| 1152 |
+
logger.info(f"Running benchmark with {num_runs} iterations")
|
| 1153 |
+
|
| 1154 |
+
# Load model first
|
| 1155 |
+
model_obj, tokenizer_obj = load_model()
|
| 1156 |
+
if model_obj is None or tokenizer_obj is None:
|
| 1157 |
+
logger.error("Failed to load model for benchmark")
|
| 1158 |
+
return None
|
| 1159 |
+
|
| 1160 |
+
system_prompt = "You are a helpful assistant."
|
| 1161 |
+
user_input = "Explain the importance of renewable energy in 2-3 sentences."
|
| 1162 |
+
|
| 1163 |
+
times = []
|
| 1164 |
+
token_counts = []
|
| 1165 |
+
|
| 1166 |
+
for i in range(num_runs):
|
| 1167 |
+
logger.info(f"Benchmark run {i + 1}/{num_runs}")
|
| 1168 |
+
|
| 1169 |
+
start_time = time.time()
|
| 1170 |
+
response = generate_response(system_prompt, user_input, "Middle-ground")
|
| 1171 |
+
end_time = time.time()
|
| 1172 |
+
|
| 1173 |
+
if response:
|
| 1174 |
+
generation_time = end_time - start_time
|
| 1175 |
+
times.append(generation_time)
|
| 1176 |
+
|
| 1177 |
+
# Estimate token count (rough approximation)
|
| 1178 |
+
token_count = len(response.split()) * 1.3 # Rough tokens-to-words ratio
|
| 1179 |
+
token_counts.append(token_count)
|
| 1180 |
+
|
| 1181 |
+
logger.info(f"Run {i + 1}: {generation_time:.2f}s, ~{token_count:.0f} tokens")
|
| 1182 |
+
else:
|
| 1183 |
+
logger.warning(f"Run {i + 1} failed")
|
| 1184 |
+
|
| 1185 |
+
if times:
|
| 1186 |
+
avg_time = sum(times) / len(times)
|
| 1187 |
+
avg_tokens = sum(token_counts) / len(token_counts)
|
| 1188 |
+
tokens_per_sec = avg_tokens / avg_time if avg_time > 0 else 0
|
| 1189 |
+
|
| 1190 |
+
benchmark_results = {
|
| 1191 |
+
"runs": num_runs,
|
| 1192 |
+
"successful_runs": len(times),
|
| 1193 |
+
"avg_time": avg_time,
|
| 1194 |
+
"avg_tokens": avg_tokens,
|
| 1195 |
+
"tokens_per_second": tokens_per_sec,
|
| 1196 |
+
"min_time": min(times),
|
| 1197 |
+
"max_time": max(times)
|
| 1198 |
+
}
|
| 1199 |
+
|
| 1200 |
+
logger.info(f"Benchmark results: {benchmark_results}")
|
| 1201 |
+
return benchmark_results
|
| 1202 |
+
else:
|
| 1203 |
+
logger.error("All benchmark runs failed")
|
| 1204 |
+
return None
|
| 1205 |
+
|
| 1206 |
+
except Exception as e:
|
| 1207 |
+
logger.error(f"Error in benchmark: {e}")
|
| 1208 |
+
return None
|
| 1209 |
+
|
| 1210 |
+
|
| 1211 |
+
# API-like interface functions
|
| 1212 |
+
def initialize_system():
|
| 1213 |
+
"""Initialize the inference system"""
|
| 1214 |
+
try:
|
| 1215 |
+
logger.info("Initializing inference system...")
|
| 1216 |
+
|
| 1217 |
+
# Check system requirements
|
| 1218 |
+
if not check_system_requirements():
|
| 1219 |
+
return {"status": "error", "message": "System requirements not met"}
|
| 1220 |
+
|
| 1221 |
+
# Load model and tokenizer
|
| 1222 |
+
model_obj, tokenizer_obj = load_model()
|
| 1223 |
+
if model_obj is None or tokenizer_obj is None:
|
| 1224 |
+
return {"status": "error", "message": "Failed to load model"}
|
| 1225 |
+
|
| 1226 |
+
# Run health check
|
| 1227 |
+
health = health_check()
|
| 1228 |
+
if "error" in health:
|
| 1229 |
+
return {"status": "warning", "message": "System initialized with warnings", "health": health}
|
| 1230 |
+
|
| 1231 |
+
logger.info("Inference system initialized successfully")
|
| 1232 |
+
return {"status": "success", "message": "System initialized successfully", "health": health}
|
| 1233 |
+
|
| 1234 |
+
except Exception as e:
|
| 1235 |
+
logger.error(f"Error initializing system: {e}")
|
| 1236 |
+
return {"status": "error", "message": str(e)}
|
| 1237 |
+
|
| 1238 |
+
|
| 1239 |
+
def shutdown_system():
|
| 1240 |
+
"""Shutdown the inference system cleanly"""
|
| 1241 |
+
try:
|
| 1242 |
+
logger.info("Shutting down inference system...")
|
| 1243 |
+
cleanup_resources()
|
| 1244 |
+
logger.info("Inference system shutdown complete")
|
| 1245 |
+
return {"status": "success", "message": "System shutdown successfully"}
|
| 1246 |
+
except Exception as e:
|
| 1247 |
+
logger.error(f"Error during shutdown: {e}")
|
| 1248 |
+
return {"status": "error", "message": str(e)}
|
| 1249 |
+
|
| 1250 |
+
|
| 1251 |
+
if __name__ == "__main__":
|
| 1252 |
+
"""Main entry point for testing"""
|
| 1253 |
+
try:
|
| 1254 |
+
logger.info("Starting model inference system")
|
| 1255 |
+
|
| 1256 |
+
# Initialize system
|
| 1257 |
+
init_result = initialize_system()
|
| 1258 |
+
logger.info(f"Initialization result: {init_result}")
|
| 1259 |
+
|
| 1260 |
+
if init_result["status"] != "error":
|
| 1261 |
+
# Run example
|
| 1262 |
+
success = run_example()
|
| 1263 |
+
|
| 1264 |
+
if success:
|
| 1265 |
+
logger.info("System test completed successfully")
|
| 1266 |
+
|
| 1267 |
+
# Optionally run additional tests
|
| 1268 |
+
print("\nWould you like to run additional tests? (y/n)")
|
| 1269 |
+
try:
|
| 1270 |
+
choice = input().lower().strip()
|
| 1271 |
+
if choice == 'y':
|
| 1272 |
+
logger.info("Running batch test...")
|
| 1273 |
+
batch_results = run_batch_test()
|
| 1274 |
+
logger.info(f"Batch test results: {batch_results}")
|
| 1275 |
+
|
| 1276 |
+
logger.info("Running benchmark...")
|
| 1277 |
+
benchmark_results = benchmark_generation(3)
|
| 1278 |
+
logger.info(f"Benchmark results: {benchmark_results}")
|
| 1279 |
+
|
| 1280 |
+
except (EOFError, KeyboardInterrupt):
|
| 1281 |
+
logger.info("Skipping additional tests")
|
| 1282 |
+
else:
|
| 1283 |
+
logger.error("System test failed")
|
| 1284 |
+
|
| 1285 |
+
# Shutdown
|
| 1286 |
+
shutdown_result = shutdown_system()
|
| 1287 |
+
logger.info(f"Shutdown result: {shutdown_result}")
|
| 1288 |
+
|
| 1289 |
+
except KeyboardInterrupt:
|
| 1290 |
+
logger.info("Interrupted by user")
|
| 1291 |
+
cleanup_resources()
|
| 1292 |
+
except Exception as e:
|
| 1293 |
+
logger.error(f"Unexpected error in main: {e}")
|
| 1294 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 1295 |
+
cleanup_resources()
|
| 1296 |
+
finally:
|
| 1297 |
+
logger.info("Program terminated")
|
model_handler.py
CHANGED
|
@@ -14,7 +14,7 @@ torch.backends.cudnn.allow_tf32 = True
|
|
| 14 |
# Global model and tokenizer variables
|
| 15 |
model = None
|
| 16 |
tokenizer = None
|
| 17 |
-
MODEL_ID = "kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.
|
| 18 |
|
| 19 |
# Inference configurations
|
| 20 |
INFERENCE_CONFIGS = {
|
|
|
|
| 14 |
# Global model and tokenizer variables
|
| 15 |
model = None
|
| 16 |
tokenizer = None
|
| 17 |
+
MODEL_ID = "kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.3-finetuned-tool"
|
| 18 |
|
| 19 |
# Inference configurations
|
| 20 |
INFERENCE_CONFIGS = {
|