Add OpenLLM data_loader.py source file
Browse files- data_loader.py +480 -0
data_loader.py
ADDED
|
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# Copyright (C) 2024 Louis Chua Bean Chong
|
| 3 |
+
#
|
| 4 |
+
# This file is part of OpenLLM.
|
| 5 |
+
#
|
| 6 |
+
# OpenLLM is dual-licensed:
|
| 7 |
+
# 1. For open source use: GNU General Public License v3.0
|
| 8 |
+
# 2. For commercial use: Commercial License (contact for details)
|
| 9 |
+
#
|
| 10 |
+
# See LICENSE and docs/LICENSES.md for full license information.
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
Training Data Loader for Language Model Training
|
| 14 |
+
|
| 15 |
+
This module provides efficient data loading and batching for training GPT-style
|
| 16 |
+
language models. It handles text preprocessing, tokenization, and creates
|
| 17 |
+
batches suitable for autoregressive language modeling.
|
| 18 |
+
|
| 19 |
+
FEATURES:
|
| 20 |
+
- Memory-efficient text loading with sliding window
|
| 21 |
+
- Automatic tokenization using trained SentencePiece model
|
| 22 |
+
- Configurable sequence length and batch size
|
| 23 |
+
- CPU-optimized data loading for limited hardware
|
| 24 |
+
- Support for training data validation and statistics
|
| 25 |
+
|
| 26 |
+
MEMORY OPTIMIZATION:
|
| 27 |
+
- Streaming data loading (doesn't load entire dataset to memory)
|
| 28 |
+
- Configurable chunk sizes for large files
|
| 29 |
+
- Efficient tensor creation and batching
|
| 30 |
+
- Garbage collection hints for memory management
|
| 31 |
+
|
| 32 |
+
Usage:
|
| 33 |
+
from data_loader import TextDataLoader
|
| 34 |
+
|
| 35 |
+
loader = TextDataLoader(
|
| 36 |
+
data_file="data/clean/training_data.txt",
|
| 37 |
+
tokenizer_path="data/tokenizer/tokenizer.model",
|
| 38 |
+
seq_len=512,
|
| 39 |
+
batch_size=4
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
for batch in loader:
|
| 43 |
+
input_ids, targets = batch
|
| 44 |
+
# input_ids: (batch_size, seq_len)
|
| 45 |
+
# targets: (batch_size, seq_len) - shifted by 1 for next token prediction
|
| 46 |
+
|
| 47 |
+
Author: Louis Chua Bean Chong
|
| 48 |
+
License: GPLv3
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
import os
|
| 52 |
+
import gc
|
| 53 |
+
import random
|
| 54 |
+
import torch
|
| 55 |
+
import time
|
| 56 |
+
from typing import Iterator, Tuple, List, Optional
|
| 57 |
+
from pathlib import Path
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
import sentencepiece as spm
|
| 61 |
+
except ImportError:
|
| 62 |
+
print("ERROR: SentencePiece not installed. Run: pip install sentencepiece")
|
| 63 |
+
exit(1)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class TextDataLoader:
|
| 67 |
+
"""
|
| 68 |
+
Efficient data loader for autoregressive language model training.
|
| 69 |
+
|
| 70 |
+
This class handles loading text data, tokenizing it using SentencePiece,
|
| 71 |
+
and creating batches suitable for next-token prediction training.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
data_file: str,
|
| 77 |
+
tokenizer_path: str,
|
| 78 |
+
seq_len: int = 512,
|
| 79 |
+
batch_size: int = 4,
|
| 80 |
+
chunk_size: int = 1000000, # Lines to read at once
|
| 81 |
+
shuffle: bool = True,
|
| 82 |
+
seed: int = 42
|
| 83 |
+
):
|
| 84 |
+
"""
|
| 85 |
+
Initialize the data loader.
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
data_file: Path to training text file (one passage per line)
|
| 89 |
+
tokenizer_path: Path to trained SentencePiece model
|
| 90 |
+
seq_len: Maximum sequence length for training
|
| 91 |
+
batch_size: Batch size for training
|
| 92 |
+
chunk_size: Number of lines to read in memory at once
|
| 93 |
+
shuffle: Whether to shuffle training examples
|
| 94 |
+
seed: Random seed for reproducibility
|
| 95 |
+
"""
|
| 96 |
+
self.data_file = data_file
|
| 97 |
+
self.tokenizer_path = tokenizer_path
|
| 98 |
+
self.seq_len = seq_len
|
| 99 |
+
self.batch_size = batch_size
|
| 100 |
+
self.chunk_size = chunk_size
|
| 101 |
+
self.shuffle = shuffle
|
| 102 |
+
self.seed = seed
|
| 103 |
+
|
| 104 |
+
# Validate inputs
|
| 105 |
+
self._validate_inputs()
|
| 106 |
+
|
| 107 |
+
# Load tokenizer
|
| 108 |
+
self.tokenizer = self._load_tokenizer()
|
| 109 |
+
|
| 110 |
+
# Get data statistics
|
| 111 |
+
self.total_lines = self._count_lines()
|
| 112 |
+
self.current_line = 0
|
| 113 |
+
|
| 114 |
+
# Set random seed for reproducibility
|
| 115 |
+
random.seed(seed)
|
| 116 |
+
|
| 117 |
+
print(f"π TextDataLoader initialized")
|
| 118 |
+
print(f" Data file: {data_file}")
|
| 119 |
+
print(f" Total passages: {self.total_lines:,}")
|
| 120 |
+
print(f" Sequence length: {seq_len}")
|
| 121 |
+
print(f" Batch size: {batch_size}")
|
| 122 |
+
print(f" Vocabulary size: {self.tokenizer.vocab_size():,}")
|
| 123 |
+
|
| 124 |
+
def _validate_inputs(self) -> None:
|
| 125 |
+
"""Validate input parameters and file paths."""
|
| 126 |
+
if not os.path.exists(self.data_file):
|
| 127 |
+
raise FileNotFoundError(f"Training data file not found: {self.data_file}")
|
| 128 |
+
|
| 129 |
+
if not os.path.exists(self.tokenizer_path):
|
| 130 |
+
raise FileNotFoundError(f"Tokenizer model not found: {self.tokenizer_path}")
|
| 131 |
+
|
| 132 |
+
if self.seq_len <= 0:
|
| 133 |
+
raise ValueError(f"Sequence length must be positive, got {self.seq_len}")
|
| 134 |
+
|
| 135 |
+
if self.batch_size <= 0:
|
| 136 |
+
raise ValueError(f"Batch size must be positive, got {self.batch_size}")
|
| 137 |
+
|
| 138 |
+
if self.chunk_size <= 0:
|
| 139 |
+
raise ValueError(f"Chunk size must be positive, got {self.chunk_size}")
|
| 140 |
+
|
| 141 |
+
def _load_tokenizer(self) -> spm.SentencePieceProcessor:
|
| 142 |
+
"""Load the trained SentencePiece tokenizer."""
|
| 143 |
+
try:
|
| 144 |
+
tokenizer = spm.SentencePieceProcessor()
|
| 145 |
+
tokenizer.load(self.tokenizer_path)
|
| 146 |
+
return tokenizer
|
| 147 |
+
except Exception as e:
|
| 148 |
+
raise RuntimeError(f"Failed to load tokenizer: {e}")
|
| 149 |
+
|
| 150 |
+
def _count_lines(self) -> int:
|
| 151 |
+
"""Count total number of lines in the data file."""
|
| 152 |
+
print("π Counting training passages...")
|
| 153 |
+
start_time = time.time()
|
| 154 |
+
|
| 155 |
+
line_count = 0
|
| 156 |
+
with open(self.data_file, 'r', encoding='utf-8') as f:
|
| 157 |
+
for line in f:
|
| 158 |
+
if line.strip(): # Only count non-empty lines
|
| 159 |
+
line_count += 1
|
| 160 |
+
|
| 161 |
+
count_time = time.time() - start_time
|
| 162 |
+
print(f"β Found {line_count:,} passages in {count_time:.1f}s")
|
| 163 |
+
|
| 164 |
+
return line_count
|
| 165 |
+
|
| 166 |
+
def _read_chunk(self, start_line: int = 0) -> List[str]:
|
| 167 |
+
"""
|
| 168 |
+
Read a chunk of lines from the data file.
|
| 169 |
+
|
| 170 |
+
Args:
|
| 171 |
+
start_line: Line number to start reading from
|
| 172 |
+
|
| 173 |
+
Returns:
|
| 174 |
+
List of text passages
|
| 175 |
+
"""
|
| 176 |
+
chunk = []
|
| 177 |
+
current_line = 0
|
| 178 |
+
lines_read = 0
|
| 179 |
+
|
| 180 |
+
with open(self.data_file, 'r', encoding='utf-8') as f:
|
| 181 |
+
for line in f:
|
| 182 |
+
if current_line < start_line:
|
| 183 |
+
current_line += 1
|
| 184 |
+
continue
|
| 185 |
+
|
| 186 |
+
text = line.strip()
|
| 187 |
+
if text: # Only include non-empty lines
|
| 188 |
+
chunk.append(text)
|
| 189 |
+
lines_read += 1
|
| 190 |
+
|
| 191 |
+
if lines_read >= self.chunk_size:
|
| 192 |
+
break
|
| 193 |
+
|
| 194 |
+
current_line += 1
|
| 195 |
+
|
| 196 |
+
return chunk
|
| 197 |
+
|
| 198 |
+
def _tokenize_texts(self, texts: List[str]) -> List[List[int]]:
|
| 199 |
+
"""
|
| 200 |
+
Tokenize a list of text passages using SentencePiece tokenizer.
|
| 201 |
+
|
| 202 |
+
This method converts raw text into token ID sequences suitable for language model training.
|
| 203 |
+
It handles special tokens (BOS/EOS) and length constraints for efficient training.
|
| 204 |
+
|
| 205 |
+
Text processing pipeline:
|
| 206 |
+
1. Add BOS (Beginning of Sequence) token to mark sequence start
|
| 207 |
+
2. Tokenize text using trained SentencePiece model (subword tokenization)
|
| 208 |
+
3. Truncate sequences that exceed maximum length
|
| 209 |
+
4. Add EOS (End of Sequence) token to mark sequence end
|
| 210 |
+
|
| 211 |
+
Special token handling:
|
| 212 |
+
- BOS token helps model learn to generate text from scratch
|
| 213 |
+
- EOS token signals natural sequence endings
|
| 214 |
+
- These tokens are crucial for proper autoregressive generation
|
| 215 |
+
|
| 216 |
+
Args:
|
| 217 |
+
texts: List of text passages (typically Wikipedia passages from SQUAD)
|
| 218 |
+
Each passage should be a complete, coherent text segment
|
| 219 |
+
|
| 220 |
+
Returns:
|
| 221 |
+
List of token ID sequences, where each sequence is a list of integers
|
| 222 |
+
representing subword tokens from the SentencePiece vocabulary
|
| 223 |
+
"""
|
| 224 |
+
tokenized = []
|
| 225 |
+
|
| 226 |
+
for text in texts:
|
| 227 |
+
try:
|
| 228 |
+
# Add BOS (Beginning of Sequence) token at the start
|
| 229 |
+
# BOS token ID=2 by default in SentencePiece, signals sequence start
|
| 230 |
+
# This helps the model learn proper sequence initialization during generation
|
| 231 |
+
tokens = [self.tokenizer.bos_id()] + self.tokenizer.encode(text)
|
| 232 |
+
|
| 233 |
+
# Truncate sequences that exceed maximum context length
|
| 234 |
+
# Reserve one position for EOS token by using (seq_len - 1)
|
| 235 |
+
# This ensures we never exceed the model's context window during training
|
| 236 |
+
if len(tokens) > self.seq_len - 1:
|
| 237 |
+
tokens = tokens[:self.seq_len - 1]
|
| 238 |
+
# NOTE: Truncation may cut off text mid-sentence, but this is acceptable
|
| 239 |
+
# for language modeling where the model learns from partial contexts
|
| 240 |
+
|
| 241 |
+
# Add EOS (End of Sequence) token at the end
|
| 242 |
+
# EOS token ID=1 by default in SentencePiece, signals sequence completion
|
| 243 |
+
# This teaches the model when to stop generating text naturally
|
| 244 |
+
tokens.append(self.tokenizer.eos_id())
|
| 245 |
+
|
| 246 |
+
# Validate tokenization result
|
| 247 |
+
if len(tokens) <= 2: # Only BOS + EOS tokens, no actual content
|
| 248 |
+
print(f"β οΈ Skipping very short text: {text[:50]}...")
|
| 249 |
+
continue
|
| 250 |
+
|
| 251 |
+
tokenized.append(tokens)
|
| 252 |
+
|
| 253 |
+
except Exception as e:
|
| 254 |
+
# Handle tokenization errors gracefully to avoid stopping training
|
| 255 |
+
# Common causes: encoding issues, very long texts, special characters
|
| 256 |
+
print(f"β οΈ Failed to tokenize passage: {text[:50]}... Error: {e}")
|
| 257 |
+
continue
|
| 258 |
+
|
| 259 |
+
# Log tokenization statistics for monitoring
|
| 260 |
+
if tokenized:
|
| 261 |
+
avg_length = sum(len(tokens) for tokens in tokenized) / len(tokenized)
|
| 262 |
+
print(f"π Tokenized {len(tokenized)} passages, avg length: {avg_length:.1f} tokens")
|
| 263 |
+
|
| 264 |
+
return tokenized
|
| 265 |
+
|
| 266 |
+
def _create_training_examples(self, token_sequences: List[List[int]]) -> List[Tuple[List[int], List[int]]]:
|
| 267 |
+
"""
|
| 268 |
+
Create training examples with input and target sequences.
|
| 269 |
+
|
| 270 |
+
For autoregressive training, targets are inputs shifted by one position.
|
| 271 |
+
|
| 272 |
+
Args:
|
| 273 |
+
token_sequences: List of tokenized sequences
|
| 274 |
+
|
| 275 |
+
Returns:
|
| 276 |
+
List of (input_ids, target_ids) tuples
|
| 277 |
+
"""
|
| 278 |
+
examples = []
|
| 279 |
+
|
| 280 |
+
for tokens in token_sequences:
|
| 281 |
+
if len(tokens) < 2: # Need at least 2 tokens for input/target pair
|
| 282 |
+
continue
|
| 283 |
+
|
| 284 |
+
# For sequences longer than seq_len, create multiple examples with sliding window
|
| 285 |
+
if len(tokens) > self.seq_len:
|
| 286 |
+
# Create overlapping windows (50% overlap for better learning)
|
| 287 |
+
stride = self.seq_len // 2
|
| 288 |
+
for i in range(0, len(tokens) - self.seq_len, stride):
|
| 289 |
+
input_ids = tokens[i:i + self.seq_len]
|
| 290 |
+
target_ids = tokens[i + 1:i + self.seq_len + 1]
|
| 291 |
+
examples.append((input_ids, target_ids))
|
| 292 |
+
else:
|
| 293 |
+
# Pad shorter sequences
|
| 294 |
+
input_ids = tokens[:-1] # All but last token
|
| 295 |
+
target_ids = tokens[1:] # All but first token
|
| 296 |
+
|
| 297 |
+
# Pad to seq_len if necessary
|
| 298 |
+
while len(input_ids) < self.seq_len:
|
| 299 |
+
input_ids.append(self.tokenizer.pad_id())
|
| 300 |
+
target_ids.append(-1) # Use -1 for padding in targets (ignored in loss)
|
| 301 |
+
|
| 302 |
+
# Truncate if still too long
|
| 303 |
+
input_ids = input_ids[:self.seq_len]
|
| 304 |
+
target_ids = target_ids[:self.seq_len]
|
| 305 |
+
|
| 306 |
+
examples.append((input_ids, target_ids))
|
| 307 |
+
|
| 308 |
+
return examples
|
| 309 |
+
|
| 310 |
+
def _create_batch(self, examples: List[Tuple[List[int], List[int]]]) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 311 |
+
"""
|
| 312 |
+
Create a batch tensor from training examples.
|
| 313 |
+
|
| 314 |
+
Args:
|
| 315 |
+
examples: List of (input_ids, target_ids) tuples
|
| 316 |
+
|
| 317 |
+
Returns:
|
| 318 |
+
Tuple of (input_tensor, target_tensor)
|
| 319 |
+
"""
|
| 320 |
+
if not examples:
|
| 321 |
+
raise ValueError("Cannot create batch from empty examples")
|
| 322 |
+
|
| 323 |
+
batch_size = len(examples)
|
| 324 |
+
|
| 325 |
+
# Initialize tensors
|
| 326 |
+
input_ids = torch.zeros((batch_size, self.seq_len), dtype=torch.long)
|
| 327 |
+
target_ids = torch.full((batch_size, self.seq_len), -1, dtype=torch.long)
|
| 328 |
+
|
| 329 |
+
# Fill tensors
|
| 330 |
+
for i, (inp, tgt) in enumerate(examples):
|
| 331 |
+
input_ids[i, :len(inp)] = torch.tensor(inp, dtype=torch.long)
|
| 332 |
+
target_ids[i, :len(tgt)] = torch.tensor(tgt, dtype=torch.long)
|
| 333 |
+
|
| 334 |
+
return input_ids, target_ids
|
| 335 |
+
|
| 336 |
+
def __iter__(self) -> Iterator[Tuple[torch.Tensor, torch.Tensor]]:
|
| 337 |
+
"""
|
| 338 |
+
Iterate over training batches.
|
| 339 |
+
|
| 340 |
+
Yields:
|
| 341 |
+
Tuple of (input_ids, target_ids) tensors
|
| 342 |
+
"""
|
| 343 |
+
self.current_line = 0
|
| 344 |
+
|
| 345 |
+
while self.current_line < self.total_lines:
|
| 346 |
+
# Read chunk of text
|
| 347 |
+
texts = self._read_chunk(self.current_line)
|
| 348 |
+
if not texts:
|
| 349 |
+
break
|
| 350 |
+
|
| 351 |
+
# Tokenize texts
|
| 352 |
+
token_sequences = self._tokenize_texts(texts)
|
| 353 |
+
|
| 354 |
+
# Create training examples
|
| 355 |
+
examples = self._create_training_examples(token_sequences)
|
| 356 |
+
|
| 357 |
+
# Shuffle examples if requested
|
| 358 |
+
if self.shuffle:
|
| 359 |
+
random.shuffle(examples)
|
| 360 |
+
|
| 361 |
+
# Create batches
|
| 362 |
+
for i in range(0, len(examples), self.batch_size):
|
| 363 |
+
batch_examples = examples[i:i + self.batch_size]
|
| 364 |
+
|
| 365 |
+
if len(batch_examples) == self.batch_size: # Only yield full batches
|
| 366 |
+
try:
|
| 367 |
+
input_ids, target_ids = self._create_batch(batch_examples)
|
| 368 |
+
yield input_ids, target_ids
|
| 369 |
+
except Exception as e:
|
| 370 |
+
print(f"β οΈ Failed to create batch: {e}")
|
| 371 |
+
continue
|
| 372 |
+
|
| 373 |
+
# Update progress
|
| 374 |
+
self.current_line += len(texts)
|
| 375 |
+
|
| 376 |
+
# Clean up memory
|
| 377 |
+
del texts, token_sequences, examples
|
| 378 |
+
gc.collect()
|
| 379 |
+
|
| 380 |
+
def get_data_stats(self) -> dict:
|
| 381 |
+
"""
|
| 382 |
+
Get statistics about the training data.
|
| 383 |
+
|
| 384 |
+
Returns:
|
| 385 |
+
Dictionary with data statistics
|
| 386 |
+
"""
|
| 387 |
+
print("π Analyzing training data...")
|
| 388 |
+
|
| 389 |
+
# Sample some data to get statistics
|
| 390 |
+
sample_texts = self._read_chunk(0)[:100] # Sample first 100 passages
|
| 391 |
+
token_sequences = self._tokenize_texts(sample_texts)
|
| 392 |
+
|
| 393 |
+
if token_sequences:
|
| 394 |
+
sequence_lengths = [len(seq) for seq in token_sequences]
|
| 395 |
+
avg_length = sum(sequence_lengths) / len(sequence_lengths)
|
| 396 |
+
max_length = max(sequence_lengths)
|
| 397 |
+
min_length = min(sequence_lengths)
|
| 398 |
+
else:
|
| 399 |
+
avg_length = max_length = min_length = 0
|
| 400 |
+
|
| 401 |
+
# Estimate total tokens
|
| 402 |
+
estimated_total_tokens = int(avg_length * self.total_lines)
|
| 403 |
+
|
| 404 |
+
# Estimate number of batches per epoch
|
| 405 |
+
examples_per_passage = max(1, avg_length // self.seq_len)
|
| 406 |
+
total_examples = int(self.total_lines * examples_per_passage)
|
| 407 |
+
batches_per_epoch = total_examples // self.batch_size
|
| 408 |
+
|
| 409 |
+
stats = {
|
| 410 |
+
"total_passages": self.total_lines,
|
| 411 |
+
"avg_tokens_per_passage": avg_length,
|
| 412 |
+
"min_tokens_per_passage": min_length,
|
| 413 |
+
"max_tokens_per_passage": max_length,
|
| 414 |
+
"estimated_total_tokens": estimated_total_tokens,
|
| 415 |
+
"estimated_examples_per_epoch": total_examples,
|
| 416 |
+
"estimated_batches_per_epoch": batches_per_epoch,
|
| 417 |
+
"sequence_length": self.seq_len,
|
| 418 |
+
"batch_size": self.batch_size,
|
| 419 |
+
"vocabulary_size": self.tokenizer.vocab_size()
|
| 420 |
+
}
|
| 421 |
+
|
| 422 |
+
print(f"β Data analysis complete:")
|
| 423 |
+
print(f" Total passages: {stats['total_passages']:,}")
|
| 424 |
+
print(f" Avg tokens per passage: {stats['avg_tokens_per_passage']:.1f}")
|
| 425 |
+
print(f" Estimated total tokens: {stats['estimated_total_tokens']:,}")
|
| 426 |
+
print(f" Estimated batches per epoch: {stats['estimated_batches_per_epoch']:,}")
|
| 427 |
+
|
| 428 |
+
return stats
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
def test_data_loader():
|
| 432 |
+
"""Test function for the data loader."""
|
| 433 |
+
print("π§ͺ Testing TextDataLoader...")
|
| 434 |
+
|
| 435 |
+
# Test with small parameters
|
| 436 |
+
try:
|
| 437 |
+
loader = TextDataLoader(
|
| 438 |
+
data_file="data/clean/training_data.txt",
|
| 439 |
+
tokenizer_path="data/tokenizer/tokenizer.model",
|
| 440 |
+
seq_len=128,
|
| 441 |
+
batch_size=2,
|
| 442 |
+
chunk_size=10 # Small for testing
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
# Get data statistics
|
| 446 |
+
stats = loader.get_data_stats()
|
| 447 |
+
|
| 448 |
+
# Test iteration
|
| 449 |
+
print("\nπ Testing batch iteration...")
|
| 450 |
+
start_time = time.time()
|
| 451 |
+
batch_count = 0
|
| 452 |
+
|
| 453 |
+
for batch_idx, (input_ids, target_ids) in enumerate(loader):
|
| 454 |
+
batch_count += 1
|
| 455 |
+
|
| 456 |
+
print(f"Batch {batch_idx + 1}:")
|
| 457 |
+
print(f" Input shape: {input_ids.shape}")
|
| 458 |
+
print(f" Target shape: {target_ids.shape}")
|
| 459 |
+
print(f" Sample input tokens: {input_ids[0][:10].tolist()}")
|
| 460 |
+
print(f" Sample target tokens: {target_ids[0][:10].tolist()}")
|
| 461 |
+
|
| 462 |
+
if batch_idx >= 2: # Only test first few batches
|
| 463 |
+
break
|
| 464 |
+
|
| 465 |
+
test_time = time.time() - start_time
|
| 466 |
+
print(f"\nβ Data loader test completed successfully!")
|
| 467 |
+
print(f" Processed {batch_count} batches in {test_time:.2f}s")
|
| 468 |
+
print(f" Average time per batch: {test_time/max(1, batch_count):.2f}s")
|
| 469 |
+
|
| 470 |
+
return True
|
| 471 |
+
|
| 472 |
+
except Exception as e:
|
| 473 |
+
print(f"β Data loader test failed: {e}")
|
| 474 |
+
import traceback
|
| 475 |
+
traceback.print_exc()
|
| 476 |
+
return False
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
if __name__ == "__main__":
|
| 480 |
+
test_data_loader()
|