Add integration guide
Browse files- integrate_auth_into_training.py +283 -0
integrate_auth_into_training.py
ADDED
|
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Integration Guide: Add Authentication to Existing Training Code
|
| 4 |
+
|
| 5 |
+
This script shows how to integrate Hugging Face authentication into your
|
| 6 |
+
existing OpenLLM training code. Copy the relevant parts into your training script.
|
| 7 |
+
|
| 8 |
+
Usage:
|
| 9 |
+
Use this as a reference to update your existing training code.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
import sys
|
| 14 |
+
import json
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
from huggingface_hub import HfApi, login, whoami, create_repo
|
| 18 |
+
HF_AVAILABLE = True
|
| 19 |
+
except ImportError:
|
| 20 |
+
HF_AVAILABLE = False
|
| 21 |
+
print("β huggingface_hub not installed")
|
| 22 |
+
sys.exit(1)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def setup_hf_authentication():
|
| 26 |
+
"""
|
| 27 |
+
Set up Hugging Face authentication using GitHub secrets.
|
| 28 |
+
Add this function to your training script.
|
| 29 |
+
"""
|
| 30 |
+
print("π Setting up Hugging Face Authentication")
|
| 31 |
+
print("-" * 40)
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
# Get token from GitHub secrets
|
| 35 |
+
token = os.getenv("HF_TOKEN")
|
| 36 |
+
if not token:
|
| 37 |
+
raise ValueError("HF_TOKEN not found. Please set it in GitHub repository secrets.")
|
| 38 |
+
|
| 39 |
+
# Login
|
| 40 |
+
login(token=token)
|
| 41 |
+
|
| 42 |
+
# Get user info
|
| 43 |
+
api = HfApi()
|
| 44 |
+
user_info = whoami()
|
| 45 |
+
username = user_info["name"]
|
| 46 |
+
|
| 47 |
+
print(f"β
Authentication successful!")
|
| 48 |
+
print(f" - Username: {username}")
|
| 49 |
+
print(f" - Source: GitHub secrets")
|
| 50 |
+
|
| 51 |
+
return api, username
|
| 52 |
+
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"β Authentication failed: {e}")
|
| 55 |
+
raise
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def upload_model_after_training(api, username, model_dir, model_size="small", steps=8000):
|
| 59 |
+
"""
|
| 60 |
+
Upload the trained model to Hugging Face Hub.
|
| 61 |
+
Call this function after your training completes.
|
| 62 |
+
"""
|
| 63 |
+
try:
|
| 64 |
+
# Create repository name
|
| 65 |
+
repo_name = f"openllm-{model_size}-extended-{steps//1000}k"
|
| 66 |
+
repo_id = f"{username}/{repo_name}"
|
| 67 |
+
|
| 68 |
+
print(f"\nπ€ Uploading model to {repo_id}")
|
| 69 |
+
|
| 70 |
+
# Create repository
|
| 71 |
+
create_repo(
|
| 72 |
+
repo_id=repo_id,
|
| 73 |
+
repo_type="model",
|
| 74 |
+
exist_ok=True,
|
| 75 |
+
private=False
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Create model configuration
|
| 79 |
+
config = {
|
| 80 |
+
"architectures": ["GPTModel"],
|
| 81 |
+
"model_type": "gpt",
|
| 82 |
+
"vocab_size": 32000,
|
| 83 |
+
"n_positions": 2048,
|
| 84 |
+
"n_embd": 768 if model_size == "small" else 1024 if model_size == "medium" else 1280,
|
| 85 |
+
"n_layer": 12 if model_size == "small" else 24 if model_size == "medium" else 32,
|
| 86 |
+
"n_head": 12 if model_size == "small" else 16 if model_size == "medium" else 20,
|
| 87 |
+
"bos_token_id": 1,
|
| 88 |
+
"eos_token_id": 2,
|
| 89 |
+
"pad_token_id": 0,
|
| 90 |
+
"unk_token_id": 3,
|
| 91 |
+
"transformers_version": "4.35.0",
|
| 92 |
+
"use_cache": True
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
config_path = os.path.join(model_dir, "config.json")
|
| 96 |
+
with open(config_path, "w") as f:
|
| 97 |
+
json.dump(config, f, indent=2)
|
| 98 |
+
|
| 99 |
+
# Create model card
|
| 100 |
+
model_card = f"""# OpenLLM {model_size.capitalize()} Model ({steps} steps)
|
| 101 |
+
|
| 102 |
+
This is a trained OpenLLM {model_size} model with extended training.
|
| 103 |
+
|
| 104 |
+
## Model Details
|
| 105 |
+
- **Model Type**: GPT-style decoder-only transformer
|
| 106 |
+
- **Architecture**: Custom OpenLLM implementation
|
| 107 |
+
- **Training Data**: SQUAD dataset (Wikipedia passages)
|
| 108 |
+
- **Vocabulary Size**: 32,000 tokens
|
| 109 |
+
- **Sequence Length**: 2,048 tokens
|
| 110 |
+
- **Model Size**: {model_size.capitalize()}
|
| 111 |
+
- **Training Steps**: {steps:,}
|
| 112 |
+
|
| 113 |
+
## Usage
|
| 114 |
+
This model can be used with the OpenLLM framework for text generation and language modeling tasks.
|
| 115 |
+
|
| 116 |
+
## License
|
| 117 |
+
This model is released under the GNU General Public License v3.0.
|
| 118 |
+
|
| 119 |
+
## Repository
|
| 120 |
+
This model is hosted on Hugging Face Hub: https://huggingface.co/{repo_id}
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
readme_path = os.path.join(model_dir, "README.md")
|
| 124 |
+
with open(readme_path, "w") as f:
|
| 125 |
+
f.write(model_card)
|
| 126 |
+
|
| 127 |
+
# Upload all files
|
| 128 |
+
api.upload_folder(
|
| 129 |
+
folder_path=model_dir,
|
| 130 |
+
repo_id=repo_id,
|
| 131 |
+
repo_type="model",
|
| 132 |
+
commit_message=f"Add OpenLLM {model_size} model ({steps} steps)"
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
print(f"β
Model uploaded successfully!")
|
| 136 |
+
print(f" - Repository: https://huggingface.co/{repo_id}")
|
| 137 |
+
|
| 138 |
+
return repo_id
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
print(f"β Upload failed: {e}")
|
| 142 |
+
raise
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
# ============================================================================
|
| 146 |
+
# INTEGRATION EXAMPLE: How to modify your existing training code
|
| 147 |
+
# ============================================================================
|
| 148 |
+
|
| 149 |
+
def example_integration():
|
| 150 |
+
"""
|
| 151 |
+
Example of how to integrate authentication into your existing training code.
|
| 152 |
+
"""
|
| 153 |
+
print("π Example: Integrating Authentication into Training")
|
| 154 |
+
print("=" * 55)
|
| 155 |
+
|
| 156 |
+
# Step 1: Set up authentication at the start
|
| 157 |
+
print("\n1οΈβ£ Setting up authentication...")
|
| 158 |
+
api, username = setup_hf_authentication()
|
| 159 |
+
|
| 160 |
+
# Step 2: Your existing training code goes here
|
| 161 |
+
print("\n2οΈβ£ Running your existing training code...")
|
| 162 |
+
print(" - This is where your actual training happens")
|
| 163 |
+
print(" - Training saves model to: ./openllm-trained")
|
| 164 |
+
|
| 165 |
+
# Simulate training completion
|
| 166 |
+
model_dir = "./openllm-trained"
|
| 167 |
+
os.makedirs(model_dir, exist_ok=True)
|
| 168 |
+
|
| 169 |
+
# Create dummy model file
|
| 170 |
+
with open(os.path.join(model_dir, "best_model.pt"), "w") as f:
|
| 171 |
+
f.write("Dummy model file")
|
| 172 |
+
|
| 173 |
+
print(" β
Training completed!")
|
| 174 |
+
|
| 175 |
+
# Step 3: Upload model after training
|
| 176 |
+
print("\n3οΈβ£ Uploading model...")
|
| 177 |
+
repo_id = upload_model_after_training(
|
| 178 |
+
api=api,
|
| 179 |
+
username=username,
|
| 180 |
+
model_dir=model_dir,
|
| 181 |
+
model_size="small",
|
| 182 |
+
steps=8000
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
print(f"\nπ Success! Model available at: https://huggingface.co/{repo_id}")
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# ============================================================================
|
| 189 |
+
# CODE SNIPPETS FOR YOUR EXISTING TRAINING SCRIPT
|
| 190 |
+
# ============================================================================
|
| 191 |
+
|
| 192 |
+
def get_code_snippets():
|
| 193 |
+
"""Show code snippets to add to your existing training script."""
|
| 194 |
+
snippets = """
|
| 195 |
+
# ============================================================================
|
| 196 |
+
# ADD THESE IMPORTS TO YOUR TRAINING SCRIPT
|
| 197 |
+
# ============================================================================
|
| 198 |
+
|
| 199 |
+
import os
|
| 200 |
+
from huggingface_hub import HfApi, login, whoami, create_repo
|
| 201 |
+
import json
|
| 202 |
+
|
| 203 |
+
# ============================================================================
|
| 204 |
+
# ADD THIS FUNCTION TO YOUR TRAINING SCRIPT
|
| 205 |
+
# ============================================================================
|
| 206 |
+
|
| 207 |
+
def setup_hf_authentication():
|
| 208 |
+
\"\"\"Set up Hugging Face authentication using GitHub secrets.\"\"\"
|
| 209 |
+
token = os.getenv("HF_TOKEN")
|
| 210 |
+
if not token:
|
| 211 |
+
raise ValueError("HF_TOKEN not found. Please set it in GitHub repository secrets.")
|
| 212 |
+
|
| 213 |
+
login(token=token)
|
| 214 |
+
api = HfApi()
|
| 215 |
+
user_info = whoami()
|
| 216 |
+
username = user_info["name"]
|
| 217 |
+
|
| 218 |
+
print(f"β
Authentication successful: {username}")
|
| 219 |
+
return api, username
|
| 220 |
+
|
| 221 |
+
# ============================================================================
|
| 222 |
+
# ADD THIS FUNCTION TO YOUR TRAINING SCRIPT
|
| 223 |
+
# ============================================================================
|
| 224 |
+
|
| 225 |
+
def upload_model_after_training(api, username, model_dir, model_size="small", steps=8000):
|
| 226 |
+
\"\"\"Upload the trained model to Hugging Face Hub.\"\"\"
|
| 227 |
+
repo_name = f"openllm-{model_size}-extended-{steps//1000}k"
|
| 228 |
+
repo_id = f"{username}/{repo_name}"
|
| 229 |
+
|
| 230 |
+
# Create repository
|
| 231 |
+
create_repo(repo_id=repo_id, repo_type="model", exist_ok=True)
|
| 232 |
+
|
| 233 |
+
# Upload all files
|
| 234 |
+
api.upload_folder(
|
| 235 |
+
folder_path=model_dir,
|
| 236 |
+
repo_id=repo_id,
|
| 237 |
+
repo_type="model",
|
| 238 |
+
commit_message=f"Add OpenLLM {model_size} model ({steps} steps)"
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
print(f"β
Model uploaded: https://huggingface.co/{repo_id}")
|
| 242 |
+
return repo_id
|
| 243 |
+
|
| 244 |
+
# ============================================================================
|
| 245 |
+
# MODIFY YOUR MAIN TRAINING FUNCTION
|
| 246 |
+
# ============================================================================
|
| 247 |
+
|
| 248 |
+
def main():
|
| 249 |
+
# Step 1: Set up authentication
|
| 250 |
+
api, username = setup_hf_authentication()
|
| 251 |
+
|
| 252 |
+
# Step 2: Your existing training code
|
| 253 |
+
# ... your training code here ...
|
| 254 |
+
|
| 255 |
+
# Step 3: Upload after training
|
| 256 |
+
model_dir = "./openllm-trained" # Your model directory
|
| 257 |
+
repo_id = upload_model_after_training(api, username, model_dir)
|
| 258 |
+
|
| 259 |
+
print(f"π Training and upload completed!")
|
| 260 |
+
|
| 261 |
+
if __name__ == "__main__":
|
| 262 |
+
main()
|
| 263 |
+
"""
|
| 264 |
+
return snippets
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def main():
|
| 268 |
+
"""Main function to demonstrate integration."""
|
| 269 |
+
print("π§ Integration Guide: Add Authentication to Existing Training")
|
| 270 |
+
print("=" * 65)
|
| 271 |
+
|
| 272 |
+
# Show example integration
|
| 273 |
+
example_integration()
|
| 274 |
+
|
| 275 |
+
# Show code snippets
|
| 276 |
+
print("\n" + "="*65)
|
| 277 |
+
print("π CODE SNIPPETS FOR YOUR EXISTING TRAINING SCRIPT")
|
| 278 |
+
print("="*65)
|
| 279 |
+
print(get_code_snippets())
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
if __name__ == "__main__":
|
| 283 |
+
main()
|