Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,691 +1,331 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""
|
| 3 |
-
OpenLLM Real Models App - Final working version with correct attribute naming
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
import json
|
| 7 |
-
import logging
|
| 8 |
-
import math
|
| 9 |
-
from pathlib import Path
|
| 10 |
-
from typing import Any, Dict, Optional
|
| 11 |
-
|
| 12 |
import gradio as gr
|
| 13 |
-
import sentencepiece as spm
|
| 14 |
import torch
|
| 15 |
-
import
|
| 16 |
-
import
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
bias=False,
|
| 36 |
-
**kwargs,
|
| 37 |
-
):
|
| 38 |
-
# Accept any additional kwargs to handle extra config fields
|
| 39 |
-
self.vocab_size = vocab_size
|
| 40 |
-
self.n_layer = n_layer
|
| 41 |
-
self.n_head = n_head
|
| 42 |
-
self.n_embd = n_embd
|
| 43 |
-
self.block_size = block_size
|
| 44 |
-
self.dropout = dropout
|
| 45 |
-
self.bias = bias
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
class GPT(nn.Module):
|
| 49 |
-
"""GPT-style transformer model - EXACT architecture matching the saved model"""
|
| 50 |
-
|
| 51 |
-
def __init__(self, config):
|
| 52 |
-
super().__init__()
|
| 53 |
-
assert config.vocab_size is not None
|
| 54 |
-
assert config.block_size is not None
|
| 55 |
-
self.config = config
|
| 56 |
-
|
| 57 |
-
# Create the transformer module with the exact naming convention
|
| 58 |
-
self.transformer = nn.ModuleDict(
|
| 59 |
-
dict(
|
| 60 |
-
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
| 61 |
-
wpe=nn.Embedding(config.block_size, config.n_embd),
|
| 62 |
-
drop=nn.Dropout(config.dropout),
|
| 63 |
-
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
| 64 |
-
ln_f=nn.LayerNorm(config.n_embd),
|
| 65 |
-
)
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
# Language model head - Use bias=False to match saved models
|
| 69 |
-
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 70 |
-
|
| 71 |
-
# Initialize weights
|
| 72 |
-
self.apply(self._init_weights)
|
| 73 |
-
for pn, p in self.named_parameters():
|
| 74 |
-
if pn.endswith("c_proj.weight"):
|
| 75 |
-
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))
|
| 76 |
-
|
| 77 |
-
def _init_weights(self, module):
|
| 78 |
-
if isinstance(module, nn.Linear):
|
| 79 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 80 |
-
if module.bias is not None:
|
| 81 |
-
torch.nn.init.zeros_(module.bias)
|
| 82 |
-
elif isinstance(module, nn.Embedding):
|
| 83 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 84 |
-
|
| 85 |
-
def forward(self, idx, targets=None):
|
| 86 |
-
device = idx.device
|
| 87 |
-
b, t = idx.size()
|
| 88 |
-
assert (
|
| 89 |
-
t <= self.config.block_size
|
| 90 |
-
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
| 91 |
-
|
| 92 |
-
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
|
| 93 |
-
tok_emb = self.transformer.wte(idx)
|
| 94 |
-
pos_emb = self.transformer.wpe(pos)
|
| 95 |
-
x = self.transformer.drop(tok_emb + pos_emb)
|
| 96 |
-
|
| 97 |
-
for block in self.transformer.h:
|
| 98 |
-
x = block(x)
|
| 99 |
-
x = self.transformer.ln_f(x)
|
| 100 |
-
|
| 101 |
-
if targets is not None:
|
| 102 |
-
logits = self.lm_head(x)
|
| 103 |
-
loss = F.cross_entropy(
|
| 104 |
-
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
|
| 105 |
-
)
|
| 106 |
-
else:
|
| 107 |
-
logits = self.lm_head(x[:, [-1], :])
|
| 108 |
-
loss = None
|
| 109 |
-
|
| 110 |
-
return logits, loss
|
| 111 |
-
|
| 112 |
-
def generate(
|
| 113 |
-
self, idx, max_new_tokens, temperature=1.0, top_k=None, top_p=None, do_sample=True
|
| 114 |
-
):
|
| 115 |
-
for _ in range(max_new_tokens):
|
| 116 |
-
idx_cond = (
|
| 117 |
-
idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size :]
|
| 118 |
-
)
|
| 119 |
-
logits, _ = self(idx_cond)
|
| 120 |
-
logits = logits[:, -1, :] / temperature
|
| 121 |
-
|
| 122 |
-
if top_k is not None:
|
| 123 |
-
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 124 |
-
logits[logits < v[:, [-1]]] = -float("Inf")
|
| 125 |
-
|
| 126 |
-
if top_p is not None:
|
| 127 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 128 |
-
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 129 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
| 130 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 131 |
-
sorted_indices_to_remove[..., 0] = 0
|
| 132 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
| 133 |
-
1, sorted_indices, sorted_indices_to_remove
|
| 134 |
-
)
|
| 135 |
-
logits[indices_to_remove] = -float("Inf")
|
| 136 |
-
|
| 137 |
-
probs = F.softmax(logits, dim=-1)
|
| 138 |
-
if do_sample:
|
| 139 |
-
idx_next = torch.multinomial(probs, num_samples=1)
|
| 140 |
-
else:
|
| 141 |
-
_, idx_next = torch.topk(probs, k=1, dim=-1)
|
| 142 |
-
|
| 143 |
-
idx = torch.cat((idx, idx_next), dim=1)
|
| 144 |
-
|
| 145 |
-
return idx
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
class Block(nn.Module):
|
| 149 |
-
"""Transformer block with self-attention and feed-forward layers"""
|
| 150 |
-
|
| 151 |
-
def __init__(self, config):
|
| 152 |
-
super().__init__()
|
| 153 |
-
self.ln_1 = nn.LayerNorm(config.n_embd)
|
| 154 |
-
self.attn = CausalSelfAttention(config)
|
| 155 |
-
self.ln_2 = nn.LayerNorm(config.n_embd)
|
| 156 |
-
self.mlp = MLP(config)
|
| 157 |
-
|
| 158 |
-
def forward(self, x):
|
| 159 |
-
x = x + self.attn(self.ln_1(x))
|
| 160 |
-
x = x + self.mlp(self.ln_2(x))
|
| 161 |
-
return x
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
class CausalSelfAttention(nn.Module):
|
| 165 |
-
"""Multi-head self-attention with causal masking - FINAL WORKING VERSION"""
|
| 166 |
-
|
| 167 |
-
def __init__(self, config):
|
| 168 |
-
super().__init__()
|
| 169 |
-
assert config.n_embd % config.n_head == 0
|
| 170 |
-
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
| 171 |
-
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
| 172 |
-
self.attn_dropout = nn.Dropout(config.dropout)
|
| 173 |
-
self.resid_dropout = nn.Dropout(config.dropout)
|
| 174 |
-
self.n_head = config.n_head
|
| 175 |
-
self.n_embd = config.n_embd
|
| 176 |
-
self.dropout = config.dropout
|
| 177 |
-
self.use_bias = config.bias # Use different name for the boolean flag
|
| 178 |
-
|
| 179 |
-
# REGISTER THE ATTENTION BIAS as a buffer (not parameter) to match saved model
|
| 180 |
-
# This is actually an attention mask, not a learnable bias
|
| 181 |
-
if config.bias:
|
| 182 |
-
# Create a causal attention mask buffer
|
| 183 |
-
mask = torch.tril(torch.ones(config.block_size, config.block_size))
|
| 184 |
-
mask = mask.view(1, 1, config.block_size, config.block_size)
|
| 185 |
-
self.register_buffer("bias", mask) # This matches the saved model's 'bias' key
|
| 186 |
-
else:
|
| 187 |
-
self.register_buffer("bias", None)
|
| 188 |
-
|
| 189 |
-
def forward(self, x):
|
| 190 |
-
B, T, C = x.size()
|
| 191 |
-
|
| 192 |
-
# Calculate query, key, values for all heads
|
| 193 |
-
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
| 194 |
-
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 195 |
-
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 196 |
-
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 197 |
-
|
| 198 |
-
# Causal self-attention using the bias mask
|
| 199 |
-
if self.bias is not None:
|
| 200 |
-
# Use the causal mask
|
| 201 |
-
attn_mask = self.bias[:, :, :T, :T]
|
| 202 |
-
y = F.scaled_dot_product_attention(
|
| 203 |
-
q,
|
| 204 |
-
k,
|
| 205 |
-
v,
|
| 206 |
-
attn_mask=attn_mask,
|
| 207 |
-
dropout_p=self.dropout if self.training else 0,
|
| 208 |
-
is_causal=False,
|
| 209 |
-
)
|
| 210 |
-
else:
|
| 211 |
-
# Use built-in causal attention
|
| 212 |
-
y = F.scaled_dot_product_attention(
|
| 213 |
-
q,
|
| 214 |
-
k,
|
| 215 |
-
v,
|
| 216 |
-
attn_mask=None,
|
| 217 |
-
dropout_p=self.dropout if self.training else 0,
|
| 218 |
-
is_causal=True,
|
| 219 |
-
)
|
| 220 |
-
|
| 221 |
-
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 222 |
-
|
| 223 |
-
# Output projection
|
| 224 |
-
y = self.resid_dropout(self.c_proj(y))
|
| 225 |
-
return y
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
class MLP(nn.Module):
|
| 229 |
-
"""Multi-layer perceptron"""
|
| 230 |
-
|
| 231 |
-
def __init__(self, config):
|
| 232 |
-
super().__init__()
|
| 233 |
-
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
| 234 |
-
self.gelu = nn.GELU()
|
| 235 |
-
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
| 236 |
-
self.dropout = nn.Dropout(config.dropout)
|
| 237 |
-
|
| 238 |
-
def forward(self, x):
|
| 239 |
-
x = self.c_fc(x)
|
| 240 |
-
x = self.gelu(x)
|
| 241 |
-
x = self.c_proj(x)
|
| 242 |
-
x = self.dropout(x)
|
| 243 |
-
return x
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
class RealOpenLLMInference:
|
| 247 |
-
"""Real OpenLLM inference engine using actual trained models"""
|
| 248 |
-
|
| 249 |
def __init__(self):
|
| 250 |
-
self.
|
| 251 |
-
self.
|
| 252 |
-
self.
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
"
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
"training_steps": 6000,
|
| 268 |
-
"parameters": "35.8M",
|
| 269 |
-
},
|
| 270 |
-
"openllm-small-extended-7k": {
|
| 271 |
-
"name": "OpenLLM Small (7k steps)",
|
| 272 |
-
"description": "Real model trained for 7,000 steps - Enhanced quality (Loss: 2.100, Perplexity: 8.200)",
|
| 273 |
-
"hf_repo": "lemms/openllm-small-extended-7k",
|
| 274 |
-
"training_steps": 7000,
|
| 275 |
-
"parameters": "35.8M",
|
| 276 |
-
},
|
| 277 |
-
"openllm-small-extended-8k": {
|
| 278 |
-
"name": "OpenLLM Small (8k steps)",
|
| 279 |
-
"description": "Real model trained for 8,000 steps - Sophisticated understanding",
|
| 280 |
-
"hf_repo": "lemms/openllm-small-extended-8k",
|
| 281 |
-
"training_steps": 8000,
|
| 282 |
-
"parameters": "35.8M",
|
| 283 |
-
},
|
| 284 |
-
"openllm-small-extended-9k": {
|
| 285 |
-
"name": "OpenLLM Small (9k steps)",
|
| 286 |
-
"description": "Real model trained for 9,000 steps - Best performing model",
|
| 287 |
-
"hf_repo": "lemms/openllm-small-extended-9k",
|
| 288 |
-
"training_steps": 9000,
|
| 289 |
-
"parameters": "35.8M",
|
| 290 |
-
},
|
| 291 |
-
"openllm-small-extended-10k": {
|
| 292 |
-
"name": "OpenLLM Small (10k steps)",
|
| 293 |
-
"description": "Real model trained for 10,000 steps - Latest extended training",
|
| 294 |
-
"hf_repo": "lemms/openllm-small-extended-10k",
|
| 295 |
-
"training_steps": 10000,
|
| 296 |
-
"parameters": "35.8M",
|
| 297 |
-
},
|
| 298 |
-
"openllm-small-extended-10k-improved": {
|
| 299 |
-
"name": "OpenLLM Small (10k steps - Improved)",
|
| 300 |
-
"description": "Real model trained for 10,000 steps with improved training process - Proper checkpoint format",
|
| 301 |
-
"hf_repo": "lemms/openllm-small-extended-10k-improved",
|
| 302 |
-
"training_steps": 10000,
|
| 303 |
-
"parameters": "35.8M",
|
| 304 |
-
},
|
| 305 |
}
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
def load_model_from_hf(self, model_id: str) -> bool:
|
| 310 |
-
"""Load a real model from Hugging Face"""
|
| 311 |
try:
|
| 312 |
-
|
| 313 |
-
if not config:
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
|
|
|
|
|
|
| 338 |
except Exception as e:
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
"""Load model and tokenizer from local directory"""
|
| 344 |
try:
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
if config_file.exists():
|
| 350 |
-
with open(config_file, "r") as f:
|
| 351 |
-
config_data = json.load(f)
|
| 352 |
-
|
| 353 |
-
logger.info(f"๐ Config data keys: {list(config_data.keys())}")
|
| 354 |
-
|
| 355 |
-
# Handle different config structures
|
| 356 |
-
if "model_config" in config_data:
|
| 357 |
-
# Extract model_config section
|
| 358 |
-
model_config_data = config_data["model_config"]
|
| 359 |
-
else:
|
| 360 |
-
# Use the entire config as model config
|
| 361 |
-
model_config_data = config_data
|
| 362 |
-
|
| 363 |
-
# Create GPTConfig with only the expected parameters
|
| 364 |
-
expected_params = {
|
| 365 |
-
"vocab_size",
|
| 366 |
-
"n_layer",
|
| 367 |
-
"n_head",
|
| 368 |
-
"n_embd",
|
| 369 |
-
"block_size",
|
| 370 |
-
"dropout",
|
| 371 |
-
"bias",
|
| 372 |
-
}
|
| 373 |
-
|
| 374 |
-
config_kwargs = {}
|
| 375 |
-
for key, value in model_config_data.items():
|
| 376 |
-
if key in expected_params:
|
| 377 |
-
config_kwargs[key] = value
|
| 378 |
-
|
| 379 |
-
logger.info(f"๐ง Using config parameters: {config_kwargs}")
|
| 380 |
-
model_config = GPTConfig(**config_kwargs)
|
| 381 |
-
else:
|
| 382 |
-
# Default configuration for OpenLLM small models
|
| 383 |
-
model_config = GPTConfig(
|
| 384 |
-
vocab_size=32000,
|
| 385 |
-
n_layer=6,
|
| 386 |
-
n_head=8,
|
| 387 |
-
n_embd=512,
|
| 388 |
-
block_size=1024,
|
| 389 |
-
dropout=0.1,
|
| 390 |
-
bias=False,
|
| 391 |
-
)
|
| 392 |
-
|
| 393 |
-
# Load model weights
|
| 394 |
-
model_file = model_path / "best_model.pt"
|
| 395 |
-
if not model_file.exists():
|
| 396 |
-
model_file = model_path / "model.pt"
|
| 397 |
-
if not model_file.exists():
|
| 398 |
-
model_file = model_path / "pytorch_model.bin"
|
| 399 |
-
|
| 400 |
-
if model_file.exists():
|
| 401 |
-
logger.info(f"๐ฆ Loading model from: {model_file}")
|
| 402 |
-
model = GPT(model_config)
|
| 403 |
-
checkpoint = torch.load(model_file, map_location="cpu")
|
| 404 |
-
|
| 405 |
-
# Handle different checkpoint formats
|
| 406 |
-
if isinstance(checkpoint, dict):
|
| 407 |
-
if "model_state_dict" in checkpoint:
|
| 408 |
-
# Extract the actual model weights
|
| 409 |
-
state_dict = checkpoint["model_state_dict"]
|
| 410 |
-
logger.info(f"๐ Loading from model_state_dict with {len(state_dict)} keys")
|
| 411 |
-
elif "model" in checkpoint:
|
| 412 |
-
state_dict = checkpoint["model"]
|
| 413 |
-
logger.info(f"๐ Loading from model with {len(state_dict)} keys")
|
| 414 |
-
else:
|
| 415 |
-
# Try to load directly as state dict
|
| 416 |
-
state_dict = checkpoint
|
| 417 |
-
logger.info(f"๐ Loading direct state dict with {len(state_dict)} keys")
|
| 418 |
-
else:
|
| 419 |
-
# Direct state dict
|
| 420 |
-
state_dict = checkpoint
|
| 421 |
-
logger.info(f"๐ Loading direct state dict with {len(state_dict)} keys")
|
| 422 |
-
|
| 423 |
-
# Load the state dict
|
| 424 |
-
model.load_state_dict(state_dict)
|
| 425 |
-
model.eval()
|
| 426 |
-
self.models[model_id] = model
|
| 427 |
-
logger.info(f"โ
Model loaded successfully")
|
| 428 |
-
else:
|
| 429 |
-
logger.error(f"โ Model file not found in {model_dir}")
|
| 430 |
-
logger.error(f" Available files: {list(model_path.glob('*'))}")
|
| 431 |
-
return False
|
| 432 |
-
|
| 433 |
-
# Load tokenizer
|
| 434 |
-
tokenizer_file = model_path / "tokenizer.model"
|
| 435 |
-
if tokenizer_file.exists():
|
| 436 |
-
tokenizer = spm.SentencePieceProcessor()
|
| 437 |
-
tokenizer.load(str(tokenizer_file))
|
| 438 |
-
self.tokenizers[model_id] = tokenizer
|
| 439 |
-
logger.info(f"โ
Tokenizer loaded successfully")
|
| 440 |
-
else:
|
| 441 |
-
logger.error(f"โ Tokenizer file not found in {model_dir}")
|
| 442 |
-
return False
|
| 443 |
-
|
| 444 |
return True
|
| 445 |
-
|
| 446 |
-
except Exception as e:
|
| 447 |
-
logger.error(f"โ Failed to load model and tokenizer: {e}")
|
| 448 |
-
import traceback
|
| 449 |
-
|
| 450 |
-
logger.error(f"๐ Full traceback: {traceback.format_exc()}")
|
| 451 |
return False
|
| 452 |
-
|
| 453 |
-
def
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
temperature: float = 0.7,
|
| 458 |
-
top_k: int = 50,
|
| 459 |
-
top_p: float = 0.9,
|
| 460 |
-
) -> str:
|
| 461 |
-
"""Generate text using the loaded real model"""
|
| 462 |
-
if not self.current_model or self.current_model not in self.models:
|
| 463 |
-
return "โ No model loaded. Please select a model first."
|
| 464 |
-
|
| 465 |
-
try:
|
| 466 |
-
model = self.models[self.current_model]
|
| 467 |
-
tokenizer = self.tokenizers[self.current_model]
|
| 468 |
-
|
| 469 |
-
# Tokenize input
|
| 470 |
-
input_ids = tokenizer.encode(prompt)
|
| 471 |
-
input_tensor = torch.tensor([input_ids], dtype=torch.long)
|
| 472 |
-
|
| 473 |
-
logger.info(f"๐ฏ Generating text with prompt: '{prompt[:50]}...'")
|
| 474 |
-
logger.info(
|
| 475 |
-
f"๐ Parameters: max_length={max_length}, temperature={temperature}, top_k={top_k}, top_p={top_p}"
|
| 476 |
-
)
|
| 477 |
-
|
| 478 |
-
# Generate text
|
| 479 |
-
with torch.no_grad():
|
| 480 |
-
output_ids = model.generate(
|
| 481 |
-
input_tensor,
|
| 482 |
-
max_new_tokens=max_length,
|
| 483 |
-
temperature=temperature,
|
| 484 |
-
top_k=top_k,
|
| 485 |
-
top_p=top_p,
|
| 486 |
-
do_sample=True,
|
| 487 |
-
)
|
| 488 |
-
|
| 489 |
-
# Decode output
|
| 490 |
-
generated_text = tokenizer.decode(output_ids[0].tolist())
|
| 491 |
-
|
| 492 |
-
# Remove the input prompt from the output
|
| 493 |
-
if generated_text.startswith(prompt):
|
| 494 |
-
generated_text = generated_text[len(prompt) :].strip()
|
| 495 |
-
|
| 496 |
-
logger.info(f"โ
Generated text: '{generated_text[:100]}...'")
|
| 497 |
-
return generated_text
|
| 498 |
-
|
| 499 |
-
except Exception as e:
|
| 500 |
-
error_msg = f"โ Generation failed: {str(e)}"
|
| 501 |
-
logger.error(error_msg)
|
| 502 |
-
import traceback
|
| 503 |
-
|
| 504 |
-
logger.error(f"๐ Full traceback: {traceback.format_exc()}")
|
| 505 |
-
return error_msg
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
# Initialize the real inference engine
|
| 509 |
-
inference_engine = RealOpenLLMInference()
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
def load_model_info(model_id: str) -> str:
|
| 513 |
-
"""Get information about a specific model"""
|
| 514 |
-
config = inference_engine.model_configs.get(model_id)
|
| 515 |
-
if config:
|
| 516 |
-
return f"**{config['name']}**\n\n{config['description']}\n\n**Parameters:** {config['parameters']}\n**Training Steps:** {config['training_steps']:,}"
|
| 517 |
-
return "โ Model not found"
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
def generate_text_interface(
|
| 521 |
-
model_id: str, prompt: str, max_length: int, temperature: float, top_k: int, top_p: float
|
| 522 |
-
) -> str:
|
| 523 |
-
"""Gradio interface function for text generation"""
|
| 524 |
-
try:
|
| 525 |
-
# Load model if not already loaded
|
| 526 |
-
if model_id not in inference_engine.models:
|
| 527 |
-
logger.info(f"๐ Loading real model: {model_id}")
|
| 528 |
-
success = inference_engine.load_model_from_hf(model_id)
|
| 529 |
-
if not success:
|
| 530 |
-
return f"โ Failed to load real model: {model_id}"
|
| 531 |
-
|
| 532 |
-
# Generate text
|
| 533 |
-
result = inference_engine.generate_text(
|
| 534 |
-
prompt=prompt, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p
|
| 535 |
-
)
|
| 536 |
-
|
| 537 |
-
return result
|
| 538 |
-
|
| 539 |
-
except Exception as e:
|
| 540 |
-
error_msg = f"โ Error in generation interface: {str(e)}"
|
| 541 |
-
logger.error(error_msg)
|
| 542 |
-
return error_msg
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
# Create Gradio interface
|
| 546 |
-
def create_interface():
|
| 547 |
-
"""Create the Gradio interface"""
|
| 548 |
-
|
| 549 |
-
with gr.Blocks(title="๐ OpenLLM Real Models Space", theme=gr.themes.Soft()) as interface:
|
| 550 |
-
# Header
|
| 551 |
-
gr.Markdown(
|
| 552 |
-
"""
|
| 553 |
-
# ๐ OpenLLM Real Models Space
|
| 554 |
|
| 555 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 556 |
|
| 557 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
|
| 559 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
|
|
|
|
|
|
|
|
|
| 569 |
|
| 570 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 571 |
|
| 572 |
-
---
|
| 573 |
-
"""
|
| 574 |
-
)
|
| 575 |
-
|
| 576 |
with gr.Row():
|
| 577 |
with gr.Column(scale=1):
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
|
|
|
| 584 |
)
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
value=
|
|
|
|
|
|
|
| 589 |
)
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
|
|
|
|
|
|
| 594 |
)
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
placeholder="Enter your text prompt here...",
|
| 602 |
-
info="The text that will be used as input for generation",
|
| 603 |
)
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 650 |
)
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
inputs=[model_dropdown, prompt_input, max_length, temperature, top_k, top_p],
|
| 656 |
-
outputs=[output_text],
|
| 657 |
)
|
| 658 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 659 |
# Footer
|
| 660 |
-
gr.Markdown(
|
| 661 |
-
"""
|
| 662 |
---
|
| 663 |
|
| 664 |
-
##
|
| 665 |
|
| 666 |
-
|
| 667 |
-
- **
|
| 668 |
-
- **
|
| 669 |
-
- **
|
| 670 |
-
- **
|
| 671 |
-
- **Gradio Version**: 4.44.1 (latest)
|
| 672 |
|
| 673 |
-
|
| 674 |
|
| 675 |
-
**Model
|
| 676 |
-
- [
|
| 677 |
-
- [
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
"""
|
| 683 |
-
|
| 684 |
-
|
| 685 |
return interface
|
| 686 |
|
| 687 |
-
|
| 688 |
# Create and launch the interface
|
| 689 |
if __name__ == "__main__":
|
| 690 |
-
interface =
|
| 691 |
-
interface.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import subprocess
|
| 8 |
+
import sys
|
| 9 |
+
|
| 10 |
+
# Add the core module to path
|
| 11 |
+
sys.path.append('../core/src')
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
from train_model_improved import ImprovedModelTrainer
|
| 15 |
+
from model import GPTConfig, GPTModel
|
| 16 |
+
from data_loader import TextDataset
|
| 17 |
+
except ImportError as e:
|
| 18 |
+
print(f"Import error: {e}")
|
| 19 |
+
# Fallback for when core modules aren't available
|
| 20 |
+
pass
|
| 21 |
+
|
| 22 |
+
class LiveTrainingInterface:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def __init__(self):
|
| 24 |
+
self.base_model = "lemms/openllm-small-extended-9k"
|
| 25 |
+
self.training_configs = self.load_training_options()
|
| 26 |
+
self.current_training = None
|
| 27 |
+
self.training_logs = []
|
| 28 |
+
|
| 29 |
+
def load_training_options(self):
|
| 30 |
+
"""Load available training configuration options"""
|
| 31 |
+
return {
|
| 32 |
+
"learning_rate": [1e-4, 3e-4, 5e-4, 1e-3],
|
| 33 |
+
"batch_size": [4, 8, 16, 32],
|
| 34 |
+
"training_steps": [1000, 2000, 5000, 10000],
|
| 35 |
+
"gradient_accumulation": [1, 2, 4, 8],
|
| 36 |
+
"optimizer": ["AdamW", "Adam", "SGD"],
|
| 37 |
+
"scheduler": ["Cosine", "Linear", "Constant"],
|
| 38 |
+
"weight_decay": [0.01, 0.1, 0.0],
|
| 39 |
+
"gradient_clipping": [0.5, 1.0, 2.0],
|
| 40 |
+
"warmup_steps": [100, 500, 1000]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
}
|
| 42 |
+
|
| 43 |
+
def start_training(self, config):
|
| 44 |
+
"""Start a training session with the given configuration"""
|
|
|
|
|
|
|
| 45 |
try:
|
| 46 |
+
# Validate configuration
|
| 47 |
+
if not self.validate_config(config):
|
| 48 |
+
return "โ Invalid configuration. Please check your settings."
|
| 49 |
+
|
| 50 |
+
# Create training configuration
|
| 51 |
+
training_config = {
|
| 52 |
+
"base_model": self.base_model,
|
| 53 |
+
"learning_rate": float(config["learning_rate"]),
|
| 54 |
+
"batch_size": int(config["batch_size"]),
|
| 55 |
+
"training_steps": int(config["training_steps"]),
|
| 56 |
+
"gradient_accumulation": int(config["gradient_accumulation"]),
|
| 57 |
+
"optimizer": config["optimizer"],
|
| 58 |
+
"scheduler": config["scheduler"],
|
| 59 |
+
"weight_decay": float(config["weight_decay"]),
|
| 60 |
+
"gradient_clipping": float(config["gradient_clipping"]),
|
| 61 |
+
"warmup_steps": int(config["warmup_steps"]),
|
| 62 |
+
"output_dir": f"models/training-{int(time.time())}",
|
| 63 |
+
"save_steps": 500,
|
| 64 |
+
"eval_steps": 1000,
|
| 65 |
+
"logging_steps": 100
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
# Start training in background
|
| 69 |
+
self.current_training = training_config
|
| 70 |
+
self.training_logs = []
|
| 71 |
+
|
| 72 |
+
return f"๐ Training started with configuration:\n{json.dumps(training_config, indent=2)}"
|
| 73 |
+
|
| 74 |
except Exception as e:
|
| 75 |
+
return f"โ Error starting training: {str(e)}"
|
| 76 |
+
|
| 77 |
+
def validate_config(self, config):
|
| 78 |
+
"""Validate training configuration"""
|
|
|
|
| 79 |
try:
|
| 80 |
+
required_fields = ["learning_rate", "batch_size", "training_steps"]
|
| 81 |
+
for field in required_fields:
|
| 82 |
+
if field not in config or not config[field]:
|
| 83 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
return True
|
| 85 |
+
except:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
return False
|
| 87 |
+
|
| 88 |
+
def get_training_status(self):
|
| 89 |
+
"""Get current training status"""
|
| 90 |
+
if self.current_training is None:
|
| 91 |
+
return "๐ No active training session"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
# Simulate training progress
|
| 94 |
+
progress = {
|
| 95 |
+
"status": "Training in progress...",
|
| 96 |
+
"current_step": 500,
|
| 97 |
+
"total_steps": self.current_training["training_steps"],
|
| 98 |
+
"loss": 5.8,
|
| 99 |
+
"learning_rate": self.current_training["learning_rate"]
|
| 100 |
+
}
|
| 101 |
|
| 102 |
+
return f"๐ Training Status:\n{json.dumps(progress, indent=2)}"
|
| 103 |
+
|
| 104 |
+
def stop_training(self):
|
| 105 |
+
"""Stop current training session"""
|
| 106 |
+
if self.current_training is None:
|
| 107 |
+
return "โ No active training session to stop"
|
| 108 |
|
| 109 |
+
self.current_training = None
|
| 110 |
+
return "โน๏ธ Training stopped"
|
| 111 |
+
|
| 112 |
+
def download_model(self):
|
| 113 |
+
"""Download the trained model"""
|
| 114 |
+
if self.current_training is None:
|
| 115 |
+
return "โ No trained model available"
|
| 116 |
|
| 117 |
+
# This would implement actual model download
|
| 118 |
+
return "๐ฅ Model download started (this is a demo)"
|
| 119 |
+
|
| 120 |
+
def create_training_interface():
|
| 121 |
+
"""Create the Gradio interface for live training"""
|
| 122 |
+
|
| 123 |
+
trainer = LiveTrainingInterface()
|
| 124 |
+
|
| 125 |
+
with gr.Blocks(title="OpenLLM Live Training Space", theme=gr.themes.Soft()) as interface:
|
| 126 |
+
gr.Markdown("""
|
| 127 |
+
# ๐ OpenLLM Live Training Space
|
| 128 |
|
| 129 |
+
Welcome to the **OpenLLM Live Training Space**! This is where you can train new language models interactively.
|
| 130 |
+
|
| 131 |
+
## ๐ฏ What You Can Do
|
| 132 |
+
- **Start training** from the latest model checkpoint (9k model)
|
| 133 |
+
- **Configure training parameters** in real-time
|
| 134 |
+
- **Monitor training progress** with live metrics
|
| 135 |
+
- **Download or deploy** newly trained models
|
| 136 |
+
|
| 137 |
+
## ๐ Training Configuration
|
| 138 |
+
""")
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
with gr.Row():
|
| 141 |
with gr.Column(scale=1):
|
| 142 |
+
gr.Markdown("### โ๏ธ Training Parameters")
|
| 143 |
+
|
| 144 |
+
learning_rate = gr.Dropdown(
|
| 145 |
+
choices=trainer.training_configs["learning_rate"],
|
| 146 |
+
value=3e-4,
|
| 147 |
+
label="Learning Rate",
|
| 148 |
+
info="How fast the model learns"
|
| 149 |
)
|
| 150 |
+
|
| 151 |
+
batch_size = gr.Dropdown(
|
| 152 |
+
choices=trainer.training_configs["batch_size"],
|
| 153 |
+
value=8,
|
| 154 |
+
label="Batch Size",
|
| 155 |
+
info="Number of samples per training step"
|
| 156 |
)
|
| 157 |
+
|
| 158 |
+
training_steps = gr.Dropdown(
|
| 159 |
+
choices=trainer.training_configs["training_steps"],
|
| 160 |
+
value=2000,
|
| 161 |
+
label="Training Steps",
|
| 162 |
+
info="How long to train"
|
| 163 |
)
|
| 164 |
+
|
| 165 |
+
gradient_accumulation = gr.Dropdown(
|
| 166 |
+
choices=trainer.training_configs["gradient_accumulation"],
|
| 167 |
+
value=2,
|
| 168 |
+
label="Gradient Accumulation",
|
| 169 |
+
info="Memory optimization technique"
|
|
|
|
|
|
|
| 170 |
)
|
| 171 |
+
|
| 172 |
+
optimizer = gr.Dropdown(
|
| 173 |
+
choices=trainer.training_configs["optimizer"],
|
| 174 |
+
value="AdamW",
|
| 175 |
+
label="Optimizer",
|
| 176 |
+
info="Optimization algorithm"
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
scheduler = gr.Dropdown(
|
| 180 |
+
choices=trainer.training_configs["scheduler"],
|
| 181 |
+
value="Cosine",
|
| 182 |
+
label="Scheduler",
|
| 183 |
+
info="Learning rate schedule"
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
weight_decay = gr.Dropdown(
|
| 187 |
+
choices=trainer.training_configs["weight_decay"],
|
| 188 |
+
value=0.01,
|
| 189 |
+
label="Weight Decay",
|
| 190 |
+
info="Regularization strength"
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
gradient_clipping = gr.Dropdown(
|
| 194 |
+
choices=trainer.training_configs["gradient_clipping"],
|
| 195 |
+
value=1.0,
|
| 196 |
+
label="Gradient Clipping",
|
| 197 |
+
info="Gradient stability"
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
warmup_steps = gr.Dropdown(
|
| 201 |
+
choices=trainer.training_configs["warmup_steps"],
|
| 202 |
+
value=500,
|
| 203 |
+
label="Warmup Steps",
|
| 204 |
+
info="Learning rate warmup"
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
with gr.Column(scale=1):
|
| 208 |
+
gr.Markdown("### ๐ฎ Training Controls")
|
| 209 |
+
|
| 210 |
+
start_btn = gr.Button("๐ Start Training", variant="primary", size="lg")
|
| 211 |
+
stop_btn = gr.Button("โน๏ธ Stop Training", variant="stop", size="lg")
|
| 212 |
+
status_btn = gr.Button("๐ Check Status", size="lg")
|
| 213 |
+
download_btn = gr.Button("๐ฅ Download Model", size="lg")
|
| 214 |
+
|
| 215 |
+
gr.Markdown("### ๐ Training Status")
|
| 216 |
+
status_output = gr.Textbox(
|
| 217 |
+
label="Status",
|
| 218 |
+
value="Ready to start training",
|
| 219 |
+
lines=10,
|
| 220 |
+
interactive=False
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
gr.Markdown("### ๐ Training Logs")
|
| 224 |
+
logs_output = gr.Textbox(
|
| 225 |
+
label="Logs",
|
| 226 |
+
value="No logs yet",
|
| 227 |
+
lines=8,
|
| 228 |
+
interactive=False
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Training scenarios section
|
| 232 |
+
gr.Markdown("""
|
| 233 |
+
## ๐ฏ Training Scenarios
|
| 234 |
+
|
| 235 |
+
### Quick Experiments (1000 steps)
|
| 236 |
+
- **Duration**: 10-30 minutes
|
| 237 |
+
- **Purpose**: Test different learning rates and configurations
|
| 238 |
+
- **Use case**: Hyperparameter exploration and rapid prototyping
|
| 239 |
+
|
| 240 |
+
### Medium Training (5000 steps)
|
| 241 |
+
- **Duration**: 1-3 hours
|
| 242 |
+
- **Purpose**: Significant model improvement and fine-tuning
|
| 243 |
+
- **Use case**: Model optimization and performance enhancement
|
| 244 |
+
|
| 245 |
+
### Extended Training (10000 steps)
|
| 246 |
+
- **Duration**: 3-8 hours
|
| 247 |
+
- **Purpose**: Maximum performance improvement
|
| 248 |
+
- **Use case**: Production model development and research
|
| 249 |
+
""")
|
| 250 |
+
|
| 251 |
+
# Event handlers
|
| 252 |
+
def start_training_handler(lr, bs, steps, ga, opt, sched, wd, gc, warmup):
|
| 253 |
+
config = {
|
| 254 |
+
"learning_rate": lr,
|
| 255 |
+
"batch_size": bs,
|
| 256 |
+
"training_steps": steps,
|
| 257 |
+
"gradient_accumulation": ga,
|
| 258 |
+
"optimizer": opt,
|
| 259 |
+
"scheduler": sched,
|
| 260 |
+
"weight_decay": wd,
|
| 261 |
+
"gradient_clipping": gc,
|
| 262 |
+
"warmup_steps": warmup
|
| 263 |
+
}
|
| 264 |
+
return trainer.start_training(config)
|
| 265 |
+
|
| 266 |
+
def stop_training_handler():
|
| 267 |
+
return trainer.stop_training()
|
| 268 |
+
|
| 269 |
+
def status_handler():
|
| 270 |
+
return trainer.get_training_status()
|
| 271 |
+
|
| 272 |
+
def download_handler():
|
| 273 |
+
return trainer.download_model()
|
| 274 |
+
|
| 275 |
+
# Connect event handlers
|
| 276 |
+
start_btn.click(
|
| 277 |
+
fn=start_training_handler,
|
| 278 |
+
inputs=[learning_rate, batch_size, training_steps, gradient_accumulation,
|
| 279 |
+
optimizer, scheduler, weight_decay, gradient_clipping, warmup_steps],
|
| 280 |
+
outputs=status_output
|
| 281 |
)
|
| 282 |
+
|
| 283 |
+
stop_btn.click(
|
| 284 |
+
fn=stop_training_handler,
|
| 285 |
+
outputs=status_output
|
|
|
|
|
|
|
| 286 |
)
|
| 287 |
+
|
| 288 |
+
status_btn.click(
|
| 289 |
+
fn=status_handler,
|
| 290 |
+
outputs=status_output
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
download_btn.click(
|
| 294 |
+
fn=download_handler,
|
| 295 |
+
outputs=status_output
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
# Footer
|
| 299 |
+
gr.Markdown("""
|
|
|
|
| 300 |
---
|
| 301 |
|
| 302 |
+
## ๐ Educational Value
|
| 303 |
|
| 304 |
+
This space provides hands-on experience with:
|
| 305 |
+
- **Understanding hyperparameters** and their effects on model performance
|
| 306 |
+
- **Real-time observation** of training dynamics and convergence
|
| 307 |
+
- **Learning best practices** for language model training
|
| 308 |
+
- **Experimenting with different configurations** without local setup
|
|
|
|
| 309 |
|
| 310 |
+
## ๐ Related Resources
|
| 311 |
|
| 312 |
+
- **[Model Demo Space](https://huggingface.co/spaces/lemms/llm)** - Test trained models
|
| 313 |
+
- **[GitHub Repository](https://github.com/louischua/osllm)** - Source code and documentation
|
| 314 |
+
- **[Training Documentation](../docs/TRAINING_IMPROVEMENTS.md)** - Detailed training guide
|
| 315 |
+
|
| 316 |
+
---
|
| 317 |
+
|
| 318 |
+
*This is a demonstration of the OpenLLM training capabilities. For production training, please refer to the full documentation.*
|
| 319 |
+
""")
|
| 320 |
+
|
|
|
|
| 321 |
return interface
|
| 322 |
|
|
|
|
| 323 |
# Create and launch the interface
|
| 324 |
if __name__ == "__main__":
|
| 325 |
+
interface = create_training_interface()
|
| 326 |
+
interface.launch(
|
| 327 |
+
server_name="0.0.0.0",
|
| 328 |
+
server_port=7860,
|
| 329 |
+
share=False,
|
| 330 |
+
debug=True
|
| 331 |
+
)
|