Bapt120's picture
Update app.py
e8a76f0 verified
#!/usr/bin/env python3
import subprocess
import sys
import threading
import spaces
import torch
import gradio as gr
from PIL import Image
from io import BytesIO
import pypdfium2 as pdfium
from transformers import (
LightOnOCRForConditionalGeneration,
LightOnOCRProcessor,
TextIteratorStreamer,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
# Choose best attention implementation based on device
if device == "cuda":
attn_implementation = "sdpa"
dtype = torch.bfloat16
print("Using sdpa for GPU")
else:
attn_implementation = "eager" # Best for CPU
dtype = torch.float32
print("Using eager attention for CPU")
# Initialize the LightOnOCR model and processor
print(f"Loading model on {device} with {attn_implementation} attention...")
model = LightOnOCRForConditionalGeneration.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
attn_implementation=attn_implementation,
torch_dtype=dtype,
trust_remote_code=True
).to(device).eval()
processor = LightOnOCRProcessor.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
trust_remote_code=True
)
print("Model loaded successfully!")
def render_pdf_page(page, max_resolution=1540, scale=2.77):
"""Render a PDF page to PIL Image."""
width, height = page.get_size()
pixel_width = width * scale
pixel_height = height * scale
resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
target_scale = scale * resize_factor
return page.render(scale=target_scale, rev_byteorder=True).to_pil()
def process_pdf(pdf_path, page_num=1):
"""Extract a specific page from PDF."""
pdf = pdfium.PdfDocument(pdf_path)
total_pages = len(pdf)
page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
page = pdf[page_idx]
img = render_pdf_page(page)
pdf.close()
return img, total_pages, page_idx + 1
def clean_output_text(text):
"""Remove chat template artifacts from output."""
# Remove common chat template markers
markers_to_remove = ["system", "user", "assistant"]
# Split by lines and filter
lines = text.split('\n')
cleaned_lines = []
for line in lines:
stripped = line.strip()
# Skip lines that are just template markers
if stripped.lower() not in markers_to_remove:
cleaned_lines.append(line)
# Join back and strip leading/trailing whitespace
cleaned = '\n'.join(cleaned_lines).strip()
# Alternative approach: if there's an "assistant" marker, take everything after it
if "assistant" in text.lower():
parts = text.split("assistant", 1)
if len(parts) > 1:
cleaned = parts[1].strip()
return cleaned
@spaces.GPU
def extract_text_from_image(image, temperature=0.2, stream=False):
"""Extract text from image using LightOnOCR model."""
# Prepare the chat format
chat = [
{
"role": "user",
"content": [
{"type": "image", "url": image},
],
}
]
# Apply chat template and tokenize
inputs = processor.apply_chat_template(
chat,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
)
# Move inputs to device AND convert to the correct dtype
inputs = {
k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
else v.to(device) if isinstance(v, torch.Tensor)
else v
for k, v in inputs.items()
}
generation_kwargs = dict(
**inputs,
max_new_tokens=2048,
temperature=temperature if temperature > 0 else 0.0,
use_cache=True,
do_sample=temperature > 0,
)
if stream:
# Setup streamer for streaming generation
streamer = TextIteratorStreamer(
processor.tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
generation_kwargs["streamer"] = streamer
# Run generation in a separate thread
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Yield chunks as they arrive
full_text = ""
for new_text in streamer:
full_text += new_text
# Clean the accumulated text
cleaned_text = clean_output_text(full_text)
yield cleaned_text
thread.join()
else:
# Non-streaming generation
with torch.no_grad():
outputs = model.generate(**generation_kwargs)
# Decode the output
output_text = processor.decode(outputs[0], skip_special_tokens=True)
# Clean the output
cleaned_text = clean_output_text(output_text)
yield cleaned_text
def process_input(file_input, temperature, page_num, enable_streaming):
"""Process uploaded file (image or PDF) and extract text with optional streaming."""
if file_input is None:
yield "Please upload an image or PDF first.", "", "", None, gr.update()
return
image_to_process = None
page_info = ""
file_path = file_input if isinstance(file_input, str) else file_input.name
# Handle PDF files
if file_path.lower().endswith('.pdf'):
try:
image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
page_info = f"Processing page {actual_page} of {total_pages}"
except Exception as e:
yield f"Error processing PDF: {str(e)}", "", "", None, gr.update()
return
# Handle image files
else:
try:
image_to_process = Image.open(file_path)
page_info = "Processing image"
except Exception as e:
yield f"Error opening image: {str(e)}", "", "", None, gr.update()
return
try:
# Extract text using LightOnOCR with optional streaming
for extracted_text in extract_text_from_image(image_to_process, temperature, stream=enable_streaming):
yield extracted_text, extracted_text, page_info, image_to_process, gr.update()
except Exception as e:
error_msg = f"Error during text extraction: {str(e)}"
yield error_msg, error_msg, page_info, image_to_process, gr.update()
def update_slider(file_input):
"""Update page slider based on PDF page count."""
if file_input is None:
return gr.update(maximum=20, value=1)
file_path = file_input if isinstance(file_input, str) else file_input.name
if file_path.lower().endswith('.pdf'):
try:
pdf = pdfium.PdfDocument(file_path)
total_pages = len(pdf)
pdf.close()
return gr.update(maximum=total_pages, value=1)
except:
return gr.update(maximum=20, value=1)
else:
return gr.update(maximum=1, value=1)
# Create Gradio interface
with gr.Blocks(title="πŸ“– Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# πŸ“– Image/PDF to Text Extraction with LightOnOCR
**πŸ’‘ How to use:**
1. Upload an image or PDF
2. For PDFs: select which page to extract (1-20)
3. Adjust temperature if needed
4. Click "Extract Text"
**Note:** The Markdown rendering for tables may not always be perfect. Check the raw output for complex tables!
**Model:** LightOnOCR-1B-1025 by LightOn AI
**Device:** {device.upper()}
**Attention:** {attn_implementation}
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="πŸ–ΌοΈ Upload Image or PDF",
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
type="filepath"
)
rendered_image = gr.Image(
label="πŸ“„ Preview",
type="pil",
height=400,
interactive=False
)
num_pages = gr.Slider(
minimum=1,
maximum=20,
value=1,
step=1,
label="PDF: Page Number",
info="Select which page to extract"
)
page_info = gr.Textbox(
label="Processing Info",
value="",
interactive=False
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.05,
label="Temperature",
info="0.0 = deterministic, Higher = more varied"
)
enable_streaming = gr.Checkbox(
label="Enable Streaming",
value=True,
info="Show text progressively as it's generated"
)
submit_btn = gr.Button("Extract Text", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=2):
output_text = gr.Markdown(
label="πŸ“„ Extracted Text (Rendered)",
value="*Extracted text will appear here...*"
)
with gr.Row():
with gr.Column():
raw_output = gr.Textbox(
label="Raw Markdown Output",
placeholder="Raw text will appear here...",
lines=20,
max_lines=30,
show_copy_button=True
)
# Event handlers
submit_btn.click(
fn=process_input,
inputs=[file_input, temperature, num_pages, enable_streaming],
outputs=[output_text, raw_output, page_info, rendered_image, num_pages]
)
file_input.change(
fn=update_slider,
inputs=[file_input],
outputs=[num_pages]
)
clear_btn.click(
fn=lambda: (None, "*Extracted text will appear here...*", "", "", None, 1),
outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
)
if __name__ == "__main__":
demo.launch()