Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,383 +1,64 @@
|
|
| 1 |
-
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
-
|
| 4 |
import torch
|
| 5 |
-
import numpy as np
|
| 6 |
-
import pandas as pd
|
| 7 |
-
import random
|
| 8 |
-
import io
|
| 9 |
-
import imageio
|
| 10 |
-
import os
|
| 11 |
-
import tempfile
|
| 12 |
-
import atexit
|
| 13 |
-
import glob
|
| 14 |
-
import csv
|
| 15 |
-
from datetime import datetime
|
| 16 |
-
import json
|
| 17 |
-
|
| 18 |
from rdkit import Chem
|
| 19 |
from rdkit.Chem import Draw
|
| 20 |
-
|
| 21 |
-
from evaluator import Evaluator
|
| 22 |
-
# from loader import load_graph_decoder
|
| 23 |
-
|
| 24 |
-
### load model start
|
| 25 |
from graph_decoder.diffusion_model import GraphDiT
|
| 26 |
-
def count_parameters(model):
|
| 27 |
-
r"""
|
| 28 |
-
Returns the number of trainable parameters and number of all parameters in the model.
|
| 29 |
-
"""
|
| 30 |
-
trainable_params, all_param = 0, 0
|
| 31 |
-
for param in model.parameters():
|
| 32 |
-
num_params = param.numel()
|
| 33 |
-
all_param += num_params
|
| 34 |
-
if param.requires_grad:
|
| 35 |
-
trainable_params += num_params
|
| 36 |
-
|
| 37 |
-
return trainable_params, all_param
|
| 38 |
|
|
|
|
| 39 |
def load_graph_decoder(path='model_labeled'):
|
| 40 |
-
model_config_path = f"{path}/config.yaml"
|
| 41 |
-
data_info_path = f"{path}/data.meta.json"
|
| 42 |
-
|
| 43 |
model = GraphDiT(
|
| 44 |
-
model_config_path=
|
| 45 |
-
data_info_path=
|
| 46 |
model_dtype=torch.float32,
|
| 47 |
)
|
| 48 |
model.init_model(path)
|
| 49 |
model.disable_grads()
|
| 50 |
-
|
| 51 |
-
trainable_params, all_param = count_parameters(model)
|
| 52 |
-
param_stats = "Loaded Graph DiT from {} trainable params: {:,} || all params: {:,} || trainable%: {:.4f}".format(
|
| 53 |
-
path, trainable_params, all_param, 100 * trainable_params / all_param
|
| 54 |
-
)
|
| 55 |
-
print(param_stats)
|
| 56 |
return model
|
| 57 |
-
### load model end
|
| 58 |
-
|
| 59 |
-
# Load the CSV data
|
| 60 |
-
known_labels = pd.read_csv('data/known_labels.csv')
|
| 61 |
-
knwon_smiles = pd.read_csv('data/known_polymers.csv')
|
| 62 |
-
|
| 63 |
-
all_properties = ['CH4', 'CO2', 'H2', 'N2', 'O2']
|
| 64 |
-
|
| 65 |
-
# Initialize evaluators
|
| 66 |
-
evaluators = {prop: Evaluator(f'evaluators/{prop}.joblib', prop) for prop in all_properties}
|
| 67 |
-
|
| 68 |
-
# Get min and max values for each property
|
| 69 |
-
property_ranges = {prop: (known_labels[prop].min(), known_labels[prop].max()) for prop in all_properties}
|
| 70 |
-
|
| 71 |
-
# Create a temporary directory for GIFs
|
| 72 |
-
temp_dir = tempfile.mkdtemp(prefix="polymer_gifs_")
|
| 73 |
-
|
| 74 |
-
def cleanup_temp_files():
|
| 75 |
-
"""Clean up temporary GIF files on exit."""
|
| 76 |
-
for file in glob.glob(os.path.join(temp_dir, "*.gif")):
|
| 77 |
-
try:
|
| 78 |
-
os.remove(file)
|
| 79 |
-
except Exception as e:
|
| 80 |
-
print(f"Error deleting {file}: {e}")
|
| 81 |
-
try:
|
| 82 |
-
os.rmdir(temp_dir)
|
| 83 |
-
except Exception as e:
|
| 84 |
-
print(f"Error deleting temporary directory {temp_dir}: {e}")
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
|
| 89 |
-
def
|
| 90 |
-
return known_labels[all_properties].sample(1).values.tolist()[0]
|
| 91 |
-
|
| 92 |
-
def load_model(model_choice):
|
| 93 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 94 |
-
model = load_graph_decoder(path=model_choice)
|
| 95 |
-
return (model, device)
|
| 96 |
-
|
| 97 |
-
# Create a flagged folder if it doesn't exist
|
| 98 |
-
flagged_folder = "flagged"
|
| 99 |
-
os.makedirs(flagged_folder, exist_ok=True)
|
| 100 |
-
|
| 101 |
-
def save_interesting_log(smiles, properties, suggested_properties):
|
| 102 |
-
"""Save interesting polymer data to a CSV file."""
|
| 103 |
-
log_file = os.path.join(flagged_folder, "log.csv")
|
| 104 |
-
file_exists = os.path.isfile(log_file)
|
| 105 |
-
|
| 106 |
-
with open(log_file, 'a', newline='') as csvfile:
|
| 107 |
-
fieldnames = ['timestamp', 'smiles'] + all_properties + [f'suggested_{prop}' for prop in all_properties]
|
| 108 |
-
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
| 109 |
-
|
| 110 |
-
if not file_exists:
|
| 111 |
-
writer.writeheader()
|
| 112 |
-
|
| 113 |
-
log_data = {
|
| 114 |
-
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 115 |
-
'smiles': smiles,
|
| 116 |
-
**{prop: value for prop, value in zip(all_properties, properties)},
|
| 117 |
-
**{f'suggested_{prop}': value for prop, value in suggested_properties.items()}
|
| 118 |
-
}
|
| 119 |
-
writer.writerow(log_data)
|
| 120 |
-
|
| 121 |
-
@spaces.GPU(duration=75)
|
| 122 |
-
def generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
| 123 |
-
print('in generate_graph')
|
| 124 |
-
model, device = model_state
|
| 125 |
-
|
| 126 |
properties = [CH4, CO2, H2, N2, O2]
|
| 127 |
|
| 128 |
-
|
| 129 |
-
return x == 0 or x == '' or (isinstance(x, float) and np.isnan(x))
|
| 130 |
-
|
| 131 |
-
properties = [None if is_nan_like(prop) else prop for prop in properties]
|
| 132 |
-
|
| 133 |
-
nan_message = "The following gas properties were treated as NaN: "
|
| 134 |
-
nan_gases = [gas for gas, prop in zip(all_properties, properties) if prop is None]
|
| 135 |
-
nan_message += ", ".join(nan_gases) if nan_gases else "None"
|
| 136 |
-
|
| 137 |
-
num_nodes = None if num_nodes == 0 else num_nodes
|
| 138 |
-
|
| 139 |
-
for _ in range(repeating_time):
|
| 140 |
-
# try:
|
| 141 |
model.to(device)
|
| 142 |
-
generated_molecule,
|
| 143 |
-
|
| 144 |
-
# Create GIF if img_list is available
|
| 145 |
-
gif_path = None
|
| 146 |
-
if img_list and len(img_list) > 0:
|
| 147 |
-
imgs = [np.array(pil_img) for pil_img in img_list]
|
| 148 |
-
imgs.extend([imgs[-1]] * 10)
|
| 149 |
-
gif_path = os.path.join(temp_dir, f"polymer_gen_{random.randint(0, 999999)}.gif")
|
| 150 |
-
imageio.mimsave(gif_path, imgs, format='GIF', fps=fps, loop=0)
|
| 151 |
|
| 152 |
if generated_molecule is not None:
|
| 153 |
mol = Chem.MolFromSmiles(generated_molecule)
|
| 154 |
if mol is not None:
|
| 155 |
standardized_smiles = Chem.MolToSmiles(mol, isomericSmiles=True)
|
| 156 |
-
is_novel = standardized_smiles not in knwon_smiles['SMILES'].values
|
| 157 |
-
novelty_status = "Novel (Not in Labeled Set)" if is_novel else "Not Novel (Exists in Labeled Set)"
|
| 158 |
img = Draw.MolToImage(mol)
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
for prop, evaluator in evaluators.items():
|
| 163 |
-
suggested_properties[prop] = evaluator([standardized_smiles])[0]
|
| 164 |
-
|
| 165 |
-
suggested_properties_text = "\n".join([f"**Suggested {prop}:** {value:.2f}" for prop, value in suggested_properties.items()])
|
| 166 |
-
|
| 167 |
-
return (
|
| 168 |
-
f"**Generated polymer SMILES:** `{standardized_smiles}`\n\n"
|
| 169 |
-
f"**{nan_message}**\n\n"
|
| 170 |
-
f"**{novelty_status}**\n\n"
|
| 171 |
-
f"**Suggested Properties:**\n{suggested_properties_text}",
|
| 172 |
-
img,
|
| 173 |
-
gif_path,
|
| 174 |
-
properties, # Add this
|
| 175 |
-
suggested_properties # Add this
|
| 176 |
-
)
|
| 177 |
-
else:
|
| 178 |
-
return (
|
| 179 |
-
f"**Generation failed:** Could not generate a valid molecule.\n\n**{nan_message}**",
|
| 180 |
-
None,
|
| 181 |
-
gif_path,
|
| 182 |
-
properties,
|
| 183 |
-
None,
|
| 184 |
-
)
|
| 185 |
-
# except Exception as e:
|
| 186 |
-
# print(f"Error in generation: {e}")
|
| 187 |
-
# continue
|
| 188 |
|
| 189 |
-
return
|
| 190 |
-
|
| 191 |
-
def set_random_properties():
|
| 192 |
-
return random_properties()
|
| 193 |
-
|
| 194 |
-
# Create a mapping of internal names to display names
|
| 195 |
-
model_name_mapping = {
|
| 196 |
-
"model_all": "Graph DiT (trained on labeled + unlabeled)",
|
| 197 |
-
"model_labeled": "Graph DiT (trained on labeled)"
|
| 198 |
-
}
|
| 199 |
-
|
| 200 |
-
def numpy_to_python(obj):
|
| 201 |
-
if isinstance(obj, np.integer):
|
| 202 |
-
return int(obj)
|
| 203 |
-
elif isinstance(obj, np.floating):
|
| 204 |
-
return float(obj)
|
| 205 |
-
elif isinstance(obj, np.ndarray):
|
| 206 |
-
return obj.tolist()
|
| 207 |
-
elif isinstance(obj, list):
|
| 208 |
-
return [numpy_to_python(item) for item in obj]
|
| 209 |
-
elif isinstance(obj, dict):
|
| 210 |
-
return {k: numpy_to_python(v) for k, v in obj.items()}
|
| 211 |
-
else:
|
| 212 |
-
return obj
|
| 213 |
-
|
| 214 |
-
def on_generate(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
|
| 215 |
-
result = generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps)
|
| 216 |
-
# Check if the generation was successful
|
| 217 |
-
if result[0].startswith("**Generated polymer SMILES:**"):
|
| 218 |
-
smiles = result[0].split("**Generated polymer SMILES:** `")[1].split("`")[0]
|
| 219 |
-
properties = json.dumps(numpy_to_python(result[3]))
|
| 220 |
-
suggested_properties = json.dumps(numpy_to_python(result[4]))
|
| 221 |
-
# Return the result with an enabled feedback button
|
| 222 |
-
return [*result[:3], smiles, properties, suggested_properties, gr.Button(interactive=True)]
|
| 223 |
-
else:
|
| 224 |
-
# Return the result with a disabled feedback button
|
| 225 |
-
return [*result[:3], "", "[]", "[]", gr.Button(interactive=False)]
|
| 226 |
-
|
| 227 |
-
def process_feedback(checkbox_value, smiles, properties, suggested_properties):
|
| 228 |
-
if checkbox_value:
|
| 229 |
-
# Check if properties and suggested_properties are already Python objects
|
| 230 |
-
if isinstance(properties, str):
|
| 231 |
-
properties = json.loads(properties)
|
| 232 |
-
if isinstance(suggested_properties, str):
|
| 233 |
-
suggested_properties = json.loads(suggested_properties)
|
| 234 |
-
|
| 235 |
-
save_interesting_log(smiles, properties, suggested_properties)
|
| 236 |
-
return gr.Textbox(value="Thank you for your feedback! This polymer has been saved to our interesting polymers log.", visible=True)
|
| 237 |
-
else:
|
| 238 |
-
return gr.Textbox(value="Thank you for your feedback!", visible=True)
|
| 239 |
-
|
| 240 |
-
# ADD THIS FUNCTION
|
| 241 |
-
def reset_feedback_button():
|
| 242 |
-
return gr.Button(interactive=False)
|
| 243 |
-
|
| 244 |
-
# Create the Gradio interface using Blocks
|
| 245 |
-
with gr.Blocks(title="Polymer Design with GraphDiT") as iface:
|
| 246 |
-
# Navigation Bar
|
| 247 |
-
with gr.Row(elem_id="navbar"):
|
| 248 |
-
gr.Markdown("""
|
| 249 |
-
<div style="text-align: center;">
|
| 250 |
-
<h1>🔗🔬 Polymer Design with GraphDiT</h1>
|
| 251 |
-
<div style="display: flex; gap: 20px; justify-content: center; align-items: center; margin-top: 10px;">
|
| 252 |
-
<a href="https://github.com/liugangcode/Graph-DiT" target="_blank" style="display: flex; align-items: center; gap: 5px; text-decoration: none; color: inherit;">
|
| 253 |
-
<img src="https://img.icons8.com/ios-glyphs/30/000000/github.png" alt="GitHub" />
|
| 254 |
-
<span>View Code</span>
|
| 255 |
-
</a>
|
| 256 |
-
<a href="https://arxiv.org/abs/2401.13858" target="_blank" style="text-decoration: none; color: inherit;">
|
| 257 |
-
📄 View Paper
|
| 258 |
-
</a>
|
| 259 |
-
</div>
|
| 260 |
-
</div>
|
| 261 |
-
""")
|
| 262 |
-
|
| 263 |
-
# Main Description
|
| 264 |
-
gr.Markdown("""
|
| 265 |
-
## Introduction
|
| 266 |
-
|
| 267 |
-
Input the desired gas barrier properties for CH₄, CO₂, H₂, N₂, and O₂ to generate novel polymer structures. The results are visualized as molecular graphs and represented by SMILES strings if they are successfully generated. Note: Gas barrier values set to 0 will be treated as `NaN` (unconditionally). If the generation fails, please retry or increase the number of repetition attempts.
|
| 268 |
-
""")
|
| 269 |
-
|
| 270 |
-
# Model Selection
|
| 271 |
-
model_choice = gr.Radio(
|
| 272 |
-
choices=list(model_name_mapping.values()),
|
| 273 |
-
label="Model Zoo",
|
| 274 |
-
# value="Graph DiT (trained on labeled + unlabeled)"
|
| 275 |
-
value="Graph DiT (trained on labeled)"
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
# Model Description Accordion
|
| 279 |
-
with gr.Accordion("🔍 Model Description", open=False):
|
| 280 |
-
gr.Markdown("""
|
| 281 |
-
### GraphDiT: Graph Diffusion Transformer
|
| 282 |
-
|
| 283 |
-
GraphDiT is a graph diffusion model designed for targeted molecular generation. It employs a conditional diffusion process to iteratively refine molecular structures based on user-specified properties.
|
| 284 |
-
|
| 285 |
-
We have collected a labeled polymer database for gas permeability from [Membrane Database](https://research.csiro.au/virtualscreening/membrane-database-polymer-gas-separation-membranes/). Additionally, we utilize unlabeled polymer structures from [PolyInfo](https://polymer.nims.go.jp/).
|
| 286 |
-
|
| 287 |
-
The gas permeability ranges from 0 to over ten thousand, with only hundreds of labeled data points, making this task particularly challenging.
|
| 288 |
-
|
| 289 |
-
We are actively working on improving the model. We welcome any feedback regarding model usage or suggestions for improvement.
|
| 290 |
-
|
| 291 |
-
#### Currently, we have two variants of Graph DiT:
|
| 292 |
-
- **Graph DiT (trained on labeled + unlabeled)**: This model uses both labeled and unlabeled data for training, potentially leading to more diverse/novel polymer generation.
|
| 293 |
-
- **Graph DiT (trained on labeled)**: This model is trained exclusively on labeled data, which may result in higher validity but potentially less diverse/novel outputs.
|
| 294 |
-
""")
|
| 295 |
-
|
| 296 |
-
# Citation Accordion
|
| 297 |
-
with gr.Accordion("📄 Citation", open=False):
|
| 298 |
-
gr.Markdown("""
|
| 299 |
-
If you use this model or interface useful, please cite the following paper:
|
| 300 |
-
```bibtex
|
| 301 |
-
@article{graphdit2024,
|
| 302 |
-
title={Graph Diffusion Transformers for Multi-Conditional Molecular Generation},
|
| 303 |
-
author={Liu, Gang and Xu, Jiaxin and Luo, Tengfei and Jiang, Meng},
|
| 304 |
-
journal={NeurIPS},
|
| 305 |
-
year={2024},
|
| 306 |
-
}
|
| 307 |
-
```
|
| 308 |
-
""")
|
| 309 |
-
|
| 310 |
-
model_state = gr.State(lambda: load_model("model_labeled"))
|
| 311 |
-
|
| 312 |
-
with gr.Row():
|
| 313 |
-
CH4_input = gr.Slider(0, property_ranges['CH4'][1], value=2.5, label=f"CH₄ (Barrier) [0-{property_ranges['CH4'][1]:.1f}]")
|
| 314 |
-
CO2_input = gr.Slider(0, property_ranges['CO2'][1], value=15.4, label=f"CO₂ (Barrier) [0-{property_ranges['CO2'][1]:.1f}]")
|
| 315 |
-
H2_input = gr.Slider(0, property_ranges['H2'][1], value=21.0, label=f"H₂ (Barrier) [0-{property_ranges['H2'][1]:.1f}]")
|
| 316 |
-
N2_input = gr.Slider(0, property_ranges['N2'][1], value=1.5, label=f"N₂ (Barrier) [0-{property_ranges['N2'][1]:.1f}]")
|
| 317 |
-
O2_input = gr.Slider(0, property_ranges['O2'][1], value=2.8, label=f"O₂ (Barrier) [0-{property_ranges['O2'][1]:.1f}]")
|
| 318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
with gr.Row():
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
| 325 |
|
| 326 |
-
|
| 327 |
-
random_btn = gr.Button("🔀 Randomize Properties (from Labeled Data)")
|
| 328 |
-
generate_btn = gr.Button("🚀 Generate Polymer")
|
| 329 |
|
| 330 |
with gr.Row():
|
| 331 |
-
|
| 332 |
-
result_image = gr.Image(label="
|
| 333 |
-
result_gif = gr.Image(label="Generation Process Visualization", type="filepath", format="gif")
|
| 334 |
-
|
| 335 |
-
with gr.Row() as feedback_row:
|
| 336 |
-
feedback_btn = gr.Button("🌟 I think this polymer is interesting!", visible=True, interactive=False)
|
| 337 |
-
feedback_result = gr.Textbox(label="Feedback Result", visible=False)
|
| 338 |
-
|
| 339 |
-
# Add model switching functionality
|
| 340 |
-
def switch_model(choice):
|
| 341 |
-
# Convert display name back to internal name
|
| 342 |
-
internal_name = next(key for key, value in model_name_mapping.items() if value == choice)
|
| 343 |
-
return load_model(internal_name)
|
| 344 |
-
|
| 345 |
-
model_choice.change(switch_model, inputs=[model_choice], outputs=[model_state])
|
| 346 |
-
|
| 347 |
-
# Hidden components to store generation data
|
| 348 |
-
hidden_smiles = gr.Textbox(visible=False)
|
| 349 |
-
hidden_properties = gr.JSON(visible=False)
|
| 350 |
-
hidden_suggested_properties = gr.JSON(visible=False)
|
| 351 |
-
|
| 352 |
-
# Set up event handlers
|
| 353 |
-
random_btn.click(
|
| 354 |
-
set_random_properties,
|
| 355 |
-
outputs=[CH4_input, CO2_input, H2_input, N2_input, O2_input]
|
| 356 |
-
)
|
| 357 |
|
| 358 |
generate_btn.click(
|
| 359 |
-
|
| 360 |
-
inputs=[CH4_input, CO2_input, H2_input, N2_input, O2_input, guidance_scale
|
| 361 |
-
outputs=[
|
| 362 |
-
)
|
| 363 |
-
|
| 364 |
-
feedback_btn.click(
|
| 365 |
-
process_feedback,
|
| 366 |
-
inputs=[gr.Checkbox(value=True, visible=False), hidden_smiles, hidden_properties, hidden_suggested_properties],
|
| 367 |
-
outputs=[feedback_result]
|
| 368 |
-
).then(
|
| 369 |
-
lambda: gr.Button(interactive=False),
|
| 370 |
-
outputs=[feedback_btn]
|
| 371 |
)
|
| 372 |
-
|
| 373 |
-
CH4_input.change(reset_feedback_button, outputs=[feedback_btn])
|
| 374 |
-
CO2_input.change(reset_feedback_button, outputs=[feedback_btn])
|
| 375 |
-
H2_input.change(reset_feedback_button, outputs=[feedback_btn])
|
| 376 |
-
N2_input.change(reset_feedback_button, outputs=[feedback_btn])
|
| 377 |
-
O2_input.change(reset_feedback_button, outputs=[feedback_btn])
|
| 378 |
-
random_btn.click(reset_feedback_button, outputs=[feedback_btn])
|
| 379 |
|
| 380 |
-
# Launch the interface
|
| 381 |
if __name__ == "__main__":
|
| 382 |
-
|
| 383 |
-
iface.launch(share=False)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from rdkit import Chem
|
| 4 |
from rdkit.Chem import Draw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from graph_decoder.diffusion_model import GraphDiT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Load the model
|
| 8 |
def load_graph_decoder(path='model_labeled'):
|
|
|
|
|
|
|
|
|
|
| 9 |
model = GraphDiT(
|
| 10 |
+
model_config_path=f"{path}/config.yaml",
|
| 11 |
+
data_info_path=f"{path}/data.meta.json",
|
| 12 |
model_dtype=torch.float32,
|
| 13 |
)
|
| 14 |
model.init_model(path)
|
| 15 |
model.disable_grads()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
model = load_graph_decoder()
|
| 19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
| 21 |
+
def generate_polymer(CH4, CO2, H2, N2, O2, guidance_scale):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
properties = [CH4, CO2, H2, N2, O2]
|
| 23 |
|
| 24 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
model.to(device)
|
| 26 |
+
generated_molecule, _ = model.generate(properties, device=device, guide_scale=guidance_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
if generated_molecule is not None:
|
| 29 |
mol = Chem.MolFromSmiles(generated_molecule)
|
| 30 |
if mol is not None:
|
| 31 |
standardized_smiles = Chem.MolToSmiles(mol, isomericSmiles=True)
|
|
|
|
|
|
|
| 32 |
img = Draw.MolToImage(mol)
|
| 33 |
+
return standardized_smiles, img
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Error in generation: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
return "Generation failed", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# Create the Gradio interface
|
| 40 |
+
with gr.Blocks(title="Simplified Polymer Design") as iface:
|
| 41 |
+
gr.Markdown("## Polymer Design with GraphDiT")
|
| 42 |
+
|
| 43 |
with gr.Row():
|
| 44 |
+
CH4_input = gr.Slider(0, 100, value=2.5, label="CH₄ (Barrier)")
|
| 45 |
+
CO2_input = gr.Slider(0, 100, value=15.4, label="CO₂ (Barrier)")
|
| 46 |
+
H2_input = gr.Slider(0, 100, value=21.0, label="H₂ (Barrier)")
|
| 47 |
+
N2_input = gr.Slider(0, 100, value=1.5, label="N₂ (Barrier)")
|
| 48 |
+
O2_input = gr.Slider(0, 100, value=2.8, label="O₂ (Barrier)")
|
| 49 |
+
guidance_scale = gr.Slider(1, 3, value=2, label="Guidance Scale")
|
| 50 |
|
| 51 |
+
generate_btn = gr.Button("Generate Polymer")
|
|
|
|
|
|
|
| 52 |
|
| 53 |
with gr.Row():
|
| 54 |
+
result_smiles = gr.Textbox(label="Generated SMILES")
|
| 55 |
+
result_image = gr.Image(label="Molecule Visualization", type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
generate_btn.click(
|
| 58 |
+
generate_polymer,
|
| 59 |
+
inputs=[CH4_input, CO2_input, H2_input, N2_input, O2_input, guidance_scale],
|
| 60 |
+
outputs=[result_smiles, result_image]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
| 63 |
if __name__ == "__main__":
|
| 64 |
+
iface.launch()
|
|
|