Spaces:
Runtime error
Runtime error
Update graph_decoder/diffusion_model.py
Browse files- graph_decoder/diffusion_model.py +354 -354
graph_decoder/diffusion_model.py
CHANGED
|
@@ -11,25 +11,6 @@ from .transformer import Transformer
|
|
| 11 |
from .molecule_utils import graph_to_smiles, check_valid
|
| 12 |
from .visualize_utils import MolecularVisualization
|
| 13 |
|
| 14 |
-
class GraphDiT(nn.Module):
|
| 15 |
-
def __init__(
|
| 16 |
-
self,
|
| 17 |
-
model_config_path,
|
| 18 |
-
data_info_path,
|
| 19 |
-
model_dtype,
|
| 20 |
-
):
|
| 21 |
-
super().__init__()
|
| 22 |
-
|
| 23 |
-
def init_model(self, model_dir):
|
| 24 |
-
pass
|
| 25 |
-
|
| 26 |
-
def disable_grads(self):
|
| 27 |
-
pass
|
| 28 |
-
|
| 29 |
-
def generate(self, properties, guide_scale, num_nodes, number_chain_steps):
|
| 30 |
-
return 0, 0
|
| 31 |
-
|
| 32 |
-
|
| 33 |
# class GraphDiT(nn.Module):
|
| 34 |
# def __init__(
|
| 35 |
# self,
|
|
@@ -38,346 +19,365 @@ class GraphDiT(nn.Module):
|
|
| 38 |
# model_dtype,
|
| 39 |
# ):
|
| 40 |
# super().__init__()
|
| 41 |
-
# dm_cfg, data_info = utils.load_config(model_config_path, data_info_path)
|
| 42 |
-
|
| 43 |
-
# input_dims = data_info.input_dims
|
| 44 |
-
# output_dims = data_info.output_dims
|
| 45 |
-
# nodes_dist = data_info.nodes_dist
|
| 46 |
-
# active_index = data_info.active_index
|
| 47 |
-
|
| 48 |
-
# self.model_config = dm_cfg
|
| 49 |
-
# self.data_info = data_info
|
| 50 |
-
# self.T = dm_cfg.diffusion_steps
|
| 51 |
-
# self.Xdim = input_dims["X"]
|
| 52 |
-
# self.Edim = input_dims["E"]
|
| 53 |
-
# self.ydim = input_dims["y"]
|
| 54 |
-
# self.Xdim_output = output_dims["X"]
|
| 55 |
-
# self.Edim_output = output_dims["E"]
|
| 56 |
-
# self.ydim_output = output_dims["y"]
|
| 57 |
-
# self.node_dist = nodes_dist
|
| 58 |
-
# self.active_index = active_index
|
| 59 |
-
# self.max_n_nodes = data_info.max_n_nodes
|
| 60 |
-
# self.atom_decoder = data_info.atom_decoder
|
| 61 |
-
# self.hidden_size = dm_cfg.hidden_size
|
| 62 |
-
# self.mol_visualizer = MolecularVisualization(self.atom_decoder)
|
| 63 |
-
|
| 64 |
-
# self.denoiser = Transformer(
|
| 65 |
-
# max_n_nodes=self.max_n_nodes,
|
| 66 |
-
# hidden_size=dm_cfg.hidden_size,
|
| 67 |
-
# depth=dm_cfg.depth,
|
| 68 |
-
# num_heads=dm_cfg.num_heads,
|
| 69 |
-
# mlp_ratio=dm_cfg.mlp_ratio,
|
| 70 |
-
# drop_condition=dm_cfg.drop_condition,
|
| 71 |
-
# Xdim=self.Xdim,
|
| 72 |
-
# Edim=self.Edim,
|
| 73 |
-
# ydim=self.ydim,
|
| 74 |
-
# )
|
| 75 |
-
|
| 76 |
-
# self.model_dtype = model_dtype
|
| 77 |
-
# self.noise_schedule = utils.PredefinedNoiseScheduleDiscrete(
|
| 78 |
-
# dm_cfg.diffusion_noise_schedule, timesteps=dm_cfg.diffusion_steps
|
| 79 |
-
# )
|
| 80 |
-
# x_marginals = data_info.node_types.to(self.model_dtype) / torch.sum(
|
| 81 |
-
# data_info.node_types.to(self.model_dtype)
|
| 82 |
-
# )
|
| 83 |
-
# e_marginals = data_info.edge_types.to(self.model_dtype) / torch.sum(
|
| 84 |
-
# data_info.edge_types.to(self.model_dtype)
|
| 85 |
-
# )
|
| 86 |
-
# x_marginals = x_marginals / x_marginals.sum()
|
| 87 |
-
# e_marginals = e_marginals / e_marginals.sum()
|
| 88 |
-
|
| 89 |
-
# xe_conditions = data_info.transition_E.to(self.model_dtype)
|
| 90 |
-
# xe_conditions = xe_conditions[self.active_index][:, self.active_index]
|
| 91 |
-
|
| 92 |
-
# xe_conditions = xe_conditions.sum(dim=1)
|
| 93 |
-
# ex_conditions = xe_conditions.t()
|
| 94 |
-
# xe_conditions = xe_conditions / xe_conditions.sum(dim=-1, keepdim=True)
|
| 95 |
-
# ex_conditions = ex_conditions / ex_conditions.sum(dim=-1, keepdim=True)
|
| 96 |
-
|
| 97 |
-
# self.transition_model = utils.MarginalTransition(
|
| 98 |
-
# x_marginals=x_marginals,
|
| 99 |
-
# e_marginals=e_marginals,
|
| 100 |
-
# xe_conditions=xe_conditions,
|
| 101 |
-
# ex_conditions=ex_conditions,
|
| 102 |
-
# y_classes=self.ydim_output,
|
| 103 |
-
# n_nodes=self.max_n_nodes,
|
| 104 |
-
# )
|
| 105 |
-
# self.limit_dist = utils.PlaceHolder(X=x_marginals, E=e_marginals, y=None)
|
| 106 |
|
| 107 |
# def init_model(self, model_dir):
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
# self.denoiser.load_state_dict(torch.load(model_file, map_location='cpu', weights_only=True))
|
| 111 |
-
# else:
|
| 112 |
-
# raise FileNotFoundError(f"Model file not found: {model_file}")
|
| 113 |
-
|
| 114 |
# def disable_grads(self):
|
| 115 |
-
#
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
#
|
| 147 |
-
#
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
#
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
#
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
#
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
|
| 250 |
-
|
| 251 |
-
#
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
#
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
#
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
#
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
#
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
#
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
#
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
#
|
| 365 |
-
#
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
|
|
|
|
| 11 |
from .molecule_utils import graph_to_smiles, check_valid
|
| 12 |
from .visualize_utils import MolecularVisualization
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# class GraphDiT(nn.Module):
|
| 15 |
# def __init__(
|
| 16 |
# self,
|
|
|
|
| 19 |
# model_dtype,
|
| 20 |
# ):
|
| 21 |
# super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# def init_model(self, model_dir):
|
| 24 |
+
# pass
|
| 25 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# def disable_grads(self):
|
| 27 |
+
# pass
|
| 28 |
+
|
| 29 |
+
# def generate(self, properties, guide_scale, num_nodes, number_chain_steps):
|
| 30 |
+
# return 0, 0
|
| 31 |
|
| 32 |
+
|
| 33 |
+
class GraphDiT(nn.Module):
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
model_config_path,
|
| 37 |
+
data_info_path,
|
| 38 |
+
model_dtype,
|
| 39 |
+
):
|
| 40 |
+
super().__init__()
|
| 41 |
+
dm_cfg, data_info = utils.load_config(model_config_path, data_info_path)
|
| 42 |
+
|
| 43 |
+
input_dims = data_info.input_dims
|
| 44 |
+
output_dims = data_info.output_dims
|
| 45 |
+
nodes_dist = data_info.nodes_dist
|
| 46 |
+
active_index = data_info.active_index
|
| 47 |
+
|
| 48 |
+
self.model_config = dm_cfg
|
| 49 |
+
self.data_info = data_info
|
| 50 |
+
self.T = dm_cfg.diffusion_steps
|
| 51 |
+
self.Xdim = input_dims["X"]
|
| 52 |
+
self.Edim = input_dims["E"]
|
| 53 |
+
self.ydim = input_dims["y"]
|
| 54 |
+
self.Xdim_output = output_dims["X"]
|
| 55 |
+
self.Edim_output = output_dims["E"]
|
| 56 |
+
self.ydim_output = output_dims["y"]
|
| 57 |
+
self.node_dist = nodes_dist
|
| 58 |
+
self.active_index = active_index
|
| 59 |
+
self.max_n_nodes = data_info.max_n_nodes
|
| 60 |
+
self.atom_decoder = data_info.atom_decoder
|
| 61 |
+
self.hidden_size = dm_cfg.hidden_size
|
| 62 |
+
self.mol_visualizer = MolecularVisualization(self.atom_decoder)
|
| 63 |
+
|
| 64 |
+
self.denoiser = Transformer(
|
| 65 |
+
max_n_nodes=self.max_n_nodes,
|
| 66 |
+
hidden_size=dm_cfg.hidden_size,
|
| 67 |
+
depth=dm_cfg.depth,
|
| 68 |
+
num_heads=dm_cfg.num_heads,
|
| 69 |
+
mlp_ratio=dm_cfg.mlp_ratio,
|
| 70 |
+
drop_condition=dm_cfg.drop_condition,
|
| 71 |
+
Xdim=self.Xdim,
|
| 72 |
+
Edim=self.Edim,
|
| 73 |
+
ydim=self.ydim,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
self.model_dtype = model_dtype
|
| 77 |
+
self.noise_schedule = utils.PredefinedNoiseScheduleDiscrete(
|
| 78 |
+
dm_cfg.diffusion_noise_schedule, timesteps=dm_cfg.diffusion_steps
|
| 79 |
+
)
|
| 80 |
+
x_marginals = data_info.node_types.to(self.model_dtype) / torch.sum(
|
| 81 |
+
data_info.node_types.to(self.model_dtype)
|
| 82 |
+
)
|
| 83 |
+
e_marginals = data_info.edge_types.to(self.model_dtype) / torch.sum(
|
| 84 |
+
data_info.edge_types.to(self.model_dtype)
|
| 85 |
+
)
|
| 86 |
+
x_marginals = x_marginals / x_marginals.sum()
|
| 87 |
+
e_marginals = e_marginals / e_marginals.sum()
|
| 88 |
+
|
| 89 |
+
xe_conditions = data_info.transition_E.to(self.model_dtype)
|
| 90 |
+
xe_conditions = xe_conditions[self.active_index][:, self.active_index]
|
| 91 |
+
|
| 92 |
+
xe_conditions = xe_conditions.sum(dim=1)
|
| 93 |
+
ex_conditions = xe_conditions.t()
|
| 94 |
+
xe_conditions = xe_conditions / xe_conditions.sum(dim=-1, keepdim=True)
|
| 95 |
+
ex_conditions = ex_conditions / ex_conditions.sum(dim=-1, keepdim=True)
|
| 96 |
+
|
| 97 |
+
self.transition_model = utils.MarginalTransition(
|
| 98 |
+
x_marginals=x_marginals,
|
| 99 |
+
e_marginals=e_marginals,
|
| 100 |
+
xe_conditions=xe_conditions,
|
| 101 |
+
ex_conditions=ex_conditions,
|
| 102 |
+
y_classes=self.ydim_output,
|
| 103 |
+
n_nodes=self.max_n_nodes,
|
| 104 |
+
)
|
| 105 |
+
self.limit_dist = utils.PlaceHolder(X=x_marginals, E=e_marginals, y=None)
|
| 106 |
+
|
| 107 |
+
def init_model(self, model_dir):
|
| 108 |
+
model_file = os.path.join(model_dir, 'model.pt')
|
| 109 |
+
if os.path.exists(model_file):
|
| 110 |
+
self.denoiser.load_state_dict(torch.load(model_file, map_location='cpu', weights_only=True))
|
| 111 |
+
else:
|
| 112 |
+
raise FileNotFoundError(f"Model file not found: {model_file}")
|
| 113 |
+
|
| 114 |
+
def disable_grads(self):
|
| 115 |
+
self.denoiser.disable_grads()
|
| 116 |
+
|
| 117 |
+
def forward(
|
| 118 |
+
self, x, edge_index, edge_attr, graph_batch, properties, no_label_index
|
| 119 |
+
):
|
| 120 |
+
raise ValueError('Not Implement')
|
| 121 |
+
|
| 122 |
+
def _forward(self, noisy_data, unconditioned=False):
|
| 123 |
+
noisy_x, noisy_e, properties = (
|
| 124 |
+
noisy_data["X_t"].to(self.model_dtype),
|
| 125 |
+
noisy_data["E_t"].to(self.model_dtype),
|
| 126 |
+
noisy_data["y_t"].to(self.model_dtype).clone(),
|
| 127 |
+
)
|
| 128 |
+
node_mask, timestep = (
|
| 129 |
+
noisy_data["node_mask"],
|
| 130 |
+
noisy_data["t"],
|
| 131 |
+
)
|
| 132 |
|
| 133 |
+
pred = self.denoiser(
|
| 134 |
+
noisy_x,
|
| 135 |
+
noisy_e,
|
| 136 |
+
node_mask,
|
| 137 |
+
properties,
|
| 138 |
+
timestep,
|
| 139 |
+
unconditioned=unconditioned,
|
| 140 |
+
)
|
| 141 |
+
return pred
|
| 142 |
+
|
| 143 |
+
def apply_noise(self, X, E, y, node_mask):
|
| 144 |
+
"""Sample noise and apply it to the data."""
|
| 145 |
+
|
| 146 |
+
# Sample a timestep t.
|
| 147 |
+
# When evaluating, the loss for t=0 is computed separately
|
| 148 |
+
lowest_t = 0 if self.training else 1
|
| 149 |
+
t_int = torch.randint(
|
| 150 |
+
lowest_t, self.T + 1, size=(X.size(0), 1), device=X.device
|
| 151 |
+
).to(
|
| 152 |
+
self.model_dtype
|
| 153 |
+
) # (bs, 1)
|
| 154 |
+
s_int = t_int - 1
|
| 155 |
+
|
| 156 |
+
t_float = t_int / self.T
|
| 157 |
+
s_float = s_int / self.T
|
| 158 |
+
|
| 159 |
+
# beta_t and alpha_s_bar are used for denoising/loss computation
|
| 160 |
+
beta_t = self.noise_schedule(t_normalized=t_float) # (bs, 1)
|
| 161 |
+
alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s_float) # (bs, 1)
|
| 162 |
+
alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t_float) # (bs, 1)
|
| 163 |
+
|
| 164 |
+
Qtb = self.transition_model.get_Qt_bar(
|
| 165 |
+
alpha_t_bar, X.device
|
| 166 |
+
) # (bs, dx_in, dx_out), (bs, de_in, de_out)
|
| 167 |
+
|
| 168 |
+
bs, n, d = X.shape
|
| 169 |
+
X_all = torch.cat([X, E.reshape(bs, n, -1)], dim=-1)
|
| 170 |
+
prob_all = X_all @ Qtb.X
|
| 171 |
+
probX = prob_all[:, :, : self.Xdim_output]
|
| 172 |
+
probE = prob_all[:, :, self.Xdim_output :].reshape(bs, n, n, -1)
|
| 173 |
+
|
| 174 |
+
sampled_t = utils.sample_discrete_features(
|
| 175 |
+
probX=probX, probE=probE, node_mask=node_mask
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
X_t = F.one_hot(sampled_t.X, num_classes=self.Xdim_output)
|
| 179 |
+
E_t = F.one_hot(sampled_t.E, num_classes=self.Edim_output)
|
| 180 |
+
assert (X.shape == X_t.shape) and (E.shape == E_t.shape)
|
| 181 |
+
|
| 182 |
+
y_t = y
|
| 183 |
+
z_t = utils.PlaceHolder(X=X_t, E=E_t, y=y_t).type_as(X_t).mask(node_mask)
|
| 184 |
+
|
| 185 |
+
noisy_data = {
|
| 186 |
+
"t_int": t_int,
|
| 187 |
+
"t": t_float,
|
| 188 |
+
"beta_t": beta_t,
|
| 189 |
+
"alpha_s_bar": alpha_s_bar,
|
| 190 |
+
"alpha_t_bar": alpha_t_bar,
|
| 191 |
+
"X_t": z_t.X,
|
| 192 |
+
"E_t": z_t.E,
|
| 193 |
+
"y_t": z_t.y,
|
| 194 |
+
"node_mask": node_mask,
|
| 195 |
+
}
|
| 196 |
+
return noisy_data
|
| 197 |
+
|
| 198 |
+
@torch.no_grad()
|
| 199 |
+
def generate(
|
| 200 |
+
self,
|
| 201 |
+
properties,
|
| 202 |
+
guide_scale=1.,
|
| 203 |
+
num_nodes=None,
|
| 204 |
+
number_chain_steps=50,
|
| 205 |
+
):
|
| 206 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 207 |
+
properties = [float('nan') if x is None else x for x in properties]
|
| 208 |
+
properties = torch.tensor(properties, dtype=torch.float).reshape(1, -1).to(device)
|
| 209 |
+
batch_size = properties.size(0)
|
| 210 |
+
assert batch_size == 1
|
| 211 |
+
if num_nodes is None:
|
| 212 |
+
num_nodes = self.node_dist.sample_n(batch_size, device)
|
| 213 |
+
else:
|
| 214 |
+
num_nodes = torch.LongTensor([num_nodes]).to(device)
|
| 215 |
+
|
| 216 |
+
arange = (
|
| 217 |
+
torch.arange(self.max_n_nodes, device=device)
|
| 218 |
+
.unsqueeze(0)
|
| 219 |
+
.expand(batch_size, -1)
|
| 220 |
+
)
|
| 221 |
+
node_mask = arange < num_nodes.unsqueeze(1)
|
| 222 |
+
|
| 223 |
+
z_T = utils.sample_discrete_feature_noise(
|
| 224 |
+
limit_dist=self.limit_dist, node_mask=node_mask
|
| 225 |
+
)
|
| 226 |
+
X, E = z_T.X, z_T.E
|
| 227 |
+
|
| 228 |
+
assert (E == torch.transpose(E, 1, 2)).all()
|
| 229 |
+
|
| 230 |
+
if number_chain_steps > 0:
|
| 231 |
+
chain_X_size = torch.Size((number_chain_steps, X.size(1)))
|
| 232 |
+
chain_E_size = torch.Size((number_chain_steps, E.size(1), E.size(2)))
|
| 233 |
+
chain_X = torch.zeros(chain_X_size)
|
| 234 |
+
chain_E = torch.zeros(chain_E_size)
|
| 235 |
+
|
| 236 |
+
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
|
| 237 |
+
y = properties
|
| 238 |
+
for s_int in reversed(range(0, self.T)):
|
| 239 |
+
s_array = s_int * torch.ones((batch_size, 1)).type_as(y)
|
| 240 |
+
t_array = s_array + 1
|
| 241 |
+
s_norm = s_array / self.T
|
| 242 |
+
t_norm = t_array / self.T
|
| 243 |
+
|
| 244 |
+
# Sample z_s
|
| 245 |
+
sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(
|
| 246 |
+
s_norm, t_norm, X, E, y, node_mask, guide_scale, device
|
| 247 |
+
)
|
| 248 |
+
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
| 249 |
|
| 250 |
+
if number_chain_steps > 0:
|
| 251 |
+
# Save the first keep_chain graphs
|
| 252 |
+
write_index = (s_int * number_chain_steps) // self.T
|
| 253 |
+
chain_X[write_index] = discrete_sampled_s.X[:1]
|
| 254 |
+
chain_E[write_index] = discrete_sampled_s.E[:1]
|
| 255 |
+
|
| 256 |
+
# Sample
|
| 257 |
+
sampled_s = sampled_s.mask(node_mask, collapse=True)
|
| 258 |
+
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
| 259 |
+
|
| 260 |
+
molecule_list = []
|
| 261 |
+
n = num_nodes[0]
|
| 262 |
+
atom_types = X[0, :n].cpu()
|
| 263 |
+
edge_types = E[0, :n, :n].cpu()
|
| 264 |
+
molecule_list.append([atom_types, edge_types])
|
| 265 |
+
smiles = graph_to_smiles(molecule_list, self.atom_decoder)[0]
|
| 266 |
+
|
| 267 |
+
# Visualize Chains
|
| 268 |
+
if number_chain_steps > 0:
|
| 269 |
+
final_X_chain = X[:1]
|
| 270 |
+
final_E_chain = E[:1]
|
| 271 |
+
|
| 272 |
+
chain_X[0] = final_X_chain # Overwrite last frame with the resulting X, E
|
| 273 |
+
chain_E[0] = final_E_chain
|
| 274 |
+
|
| 275 |
+
chain_X = utils.reverse_tensor(chain_X)
|
| 276 |
+
chain_E = utils.reverse_tensor(chain_E)
|
| 277 |
+
|
| 278 |
+
# Repeat last frame to see final sample better
|
| 279 |
+
chain_X = torch.cat([chain_X, chain_X[-1:].repeat(10, 1)], dim=0)
|
| 280 |
+
chain_E = torch.cat([chain_E, chain_E[-1:].repeat(10, 1, 1)], dim=0)
|
| 281 |
+
mol_img_list = self.mol_visualizer.visualize_chain(chain_X.numpy(), chain_E.numpy())
|
| 282 |
+
else:
|
| 283 |
+
mol_img_list = []
|
| 284 |
+
|
| 285 |
+
return smiles, mol_img_list
|
| 286 |
+
|
| 287 |
+
def check_valid(self, smiles):
|
| 288 |
+
return check_valid(smiles)
|
| 289 |
|
| 290 |
+
def sample_p_zs_given_zt(
|
| 291 |
+
self, s, t, X_t, E_t, properties, node_mask, guide_scale, device
|
| 292 |
+
):
|
| 293 |
+
"""Samples from zs ~ p(zs | zt). Only used during sampling.
|
| 294 |
+
if last_step, return the graph prediction as well"""
|
| 295 |
+
bs, n, _ = X_t.shape
|
| 296 |
+
beta_t = self.noise_schedule(t_normalized=t) # (bs, 1)
|
| 297 |
+
alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s)
|
| 298 |
+
alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t)
|
| 299 |
+
|
| 300 |
+
# Neural net predictions
|
| 301 |
+
noisy_data = {
|
| 302 |
+
"X_t": X_t,
|
| 303 |
+
"E_t": E_t,
|
| 304 |
+
"y_t": properties,
|
| 305 |
+
"t": t,
|
| 306 |
+
"node_mask": node_mask,
|
| 307 |
+
}
|
| 308 |
+
|
| 309 |
+
def get_prob(noisy_data, unconditioned=False):
|
| 310 |
+
pred = self._forward(noisy_data, unconditioned=unconditioned)
|
| 311 |
+
|
| 312 |
+
# Normalize predictions
|
| 313 |
+
pred_X = F.softmax(pred.X, dim=-1) # bs, n, d0
|
| 314 |
+
pred_E = F.softmax(pred.E, dim=-1) # bs, n, n, d0
|
| 315 |
+
|
| 316 |
+
# Retrieve transitions matrix
|
| 317 |
+
Qtb = self.transition_model.get_Qt_bar(alpha_t_bar, device)
|
| 318 |
+
Qsb = self.transition_model.get_Qt_bar(alpha_s_bar, device)
|
| 319 |
+
Qt = self.transition_model.get_Qt(beta_t, device)
|
| 320 |
+
|
| 321 |
+
Xt_all = torch.cat([X_t, E_t.reshape(bs, n, -1)], dim=-1)
|
| 322 |
+
predX_all = torch.cat([pred_X, pred_E.reshape(bs, n, -1)], dim=-1)
|
| 323 |
+
|
| 324 |
+
unnormalized_probX_all = utils.reverse_diffusion(
|
| 325 |
+
predX_0=predX_all, X_t=Xt_all, Qt=Qt.X, Qsb=Qsb.X, Qtb=Qtb.X
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
unnormalized_prob_X = unnormalized_probX_all[:, :, : self.Xdim_output]
|
| 329 |
+
unnormalized_prob_E = unnormalized_probX_all[
|
| 330 |
+
:, :, self.Xdim_output :
|
| 331 |
+
].reshape(bs, n * n, -1)
|
| 332 |
+
|
| 333 |
+
unnormalized_prob_X[torch.sum(unnormalized_prob_X, dim=-1) == 0] = 1e-5
|
| 334 |
+
unnormalized_prob_E[torch.sum(unnormalized_prob_E, dim=-1) == 0] = 1e-5
|
| 335 |
+
|
| 336 |
+
prob_X = unnormalized_prob_X / torch.sum(
|
| 337 |
+
unnormalized_prob_X, dim=-1, keepdim=True
|
| 338 |
+
) # bs, n, d_t-1
|
| 339 |
+
prob_E = unnormalized_prob_E / torch.sum(
|
| 340 |
+
unnormalized_prob_E, dim=-1, keepdim=True
|
| 341 |
+
) # bs, n, d_t-1
|
| 342 |
+
prob_E = prob_E.reshape(bs, n, n, pred_E.shape[-1])
|
| 343 |
+
|
| 344 |
+
return prob_X, prob_E
|
| 345 |
+
|
| 346 |
+
prob_X, prob_E = get_prob(noisy_data)
|
| 347 |
+
|
| 348 |
+
### Guidance
|
| 349 |
+
if guide_scale != 1:
|
| 350 |
+
uncon_prob_X, uncon_prob_E = get_prob(
|
| 351 |
+
noisy_data, unconditioned=True
|
| 352 |
+
)
|
| 353 |
+
prob_X = (
|
| 354 |
+
uncon_prob_X
|
| 355 |
+
* (prob_X / uncon_prob_X.clamp_min(1e-5)) ** guide_scale
|
| 356 |
+
)
|
| 357 |
+
prob_E = (
|
| 358 |
+
uncon_prob_E
|
| 359 |
+
* (prob_E / uncon_prob_E.clamp_min(1e-5)) ** guide_scale
|
| 360 |
+
)
|
| 361 |
+
prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True).clamp_min(1e-5)
|
| 362 |
+
prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True).clamp_min(1e-5)
|
| 363 |
+
|
| 364 |
+
# assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-3).all()
|
| 365 |
+
# assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-3).all()
|
| 366 |
+
|
| 367 |
+
sampled_s = utils.sample_discrete_features(
|
| 368 |
+
prob_X, prob_E, node_mask=node_mask, step=s[0, 0].item()
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).to(self.model_dtype)
|
| 372 |
+
E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).to(self.model_dtype)
|
| 373 |
+
|
| 374 |
+
assert (E_s == torch.transpose(E_s, 1, 2)).all()
|
| 375 |
+
assert (X_t.shape == X_s.shape) and (E_t.shape == E_s.shape)
|
| 376 |
+
|
| 377 |
+
out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=properties)
|
| 378 |
+
out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=properties)
|
| 379 |
+
|
| 380 |
+
return out_one_hot.mask(node_mask).type_as(properties), out_discrete.mask(
|
| 381 |
+
node_mask, collapse=True
|
| 382 |
+
).type_as(properties)
|
| 383 |
|