Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from torch import Tensor, nn | |
| from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel, | |
| T5Tokenizer) | |
| import spaces | |
| import numpy as np | |
| import io | |
| import base64 | |
| class HFEmbedder(nn.Module): | |
| def __init__(self, version: str, max_length: int, **hf_kwargs): | |
| super().__init__() | |
| self.is_clip = version.startswith("openai") | |
| self.max_length = max_length | |
| self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" | |
| if self.is_clip: | |
| self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) | |
| self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) | |
| else: | |
| self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) | |
| self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) | |
| self.hf_module = self.hf_module.eval().requires_grad_(False) | |
| def forward(self, text: list[str]) -> Tensor: | |
| batch_encoding = self.tokenizer( | |
| text, | |
| truncation=True, | |
| max_length=self.max_length, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| padding="max_length", | |
| return_tensors="pt", | |
| ) | |
| outputs = self.hf_module( | |
| input_ids=batch_encoding["input_ids"].to(self.hf_module.device), | |
| attention_mask=None, | |
| output_hidden_states=False, | |
| ) | |
| return outputs[self.output_key] | |
| def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder: | |
| # max length 64, 128, 256 and 512 should work (if your sequence is short enough) | |
| return HFEmbedder("lnyan/t5-v1_1-xxl-encoder", max_length=max_length, torch_dtype=torch.bfloat16).to("cuda") | |
| def load_clip(device: str | torch.device = "cuda") -> HFEmbedder: | |
| return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to("cuda") | |
| def load_encoders(): | |
| is_schnell = True | |
| t5 = load_t5("cuda", max_length=256 if is_schnell else 512) | |
| clip = load_clip("cuda") | |
| return t5, clip | |
| import numpy as np | |
| def b64(txt,vec): | |
| buffer = io.BytesIO() | |
| np.savez_compressed(buffer, txt=txt, vec=vec) | |
| buffer.seek(0) | |
| encoded = base64.b64encode(buffer.getvalue()).decode('utf-8') | |
| return encoded | |
| t5,clip=load_encoders() | |
| def convert(prompt): | |
| if isinstance(prompt, str): | |
| prompt = [prompt] | |
| txt = t5(prompt) | |
| vec = clip(prompt) | |
| return b64(txt.cpu().numpy(),vec.cpu().numpy()) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("""A workaround for flux-flax to fit into 40G VRAM""") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="prompt") | |
| convert_btn = gr.Button(value="Convert") | |
| with gr.Column(): | |
| output = gr.Textbox(label="output") | |
| convert_btn.click(convert, inputs=prompt, outputs=output, api_name="convert") | |
| demo.launch() | |