Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,7 +29,11 @@ def make_arena_leaderboard_md(arena_df):
|
|
| 29 |
total_models = len(arena_df)
|
| 30 |
space = " "
|
| 31 |
leaderboard_md = f"""
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
"""
|
| 35 |
return leaderboard_md
|
|
@@ -45,14 +49,6 @@ def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"
|
|
| 45 |
"""
|
| 46 |
return leaderboard_md
|
| 47 |
|
| 48 |
-
def make_full_leaderboard_md(elo_results):
|
| 49 |
-
leaderboard_md = f"""
|
| 50 |
-
Three benchmarks are displayed: **Test Task 1**, **Test Task 2**, **Test Task 3**.
|
| 51 |
-
|
| 52 |
-
Higher values are better for all benchmarks.
|
| 53 |
-
"""
|
| 54 |
-
return leaderboard_md
|
| 55 |
-
|
| 56 |
|
| 57 |
def make_leaderboard_md_live(elo_results):
|
| 58 |
leaderboard_md = f"""
|
|
@@ -96,25 +92,11 @@ def update_elo_components(max_num_files, elo_results_file):
|
|
| 96 |
basic_component_values[5] = md4
|
| 97 |
|
| 98 |
|
| 99 |
-
def update_worker(max_num_files, interval, elo_results_file):
|
| 100 |
-
while True:
|
| 101 |
-
tic = time.time()
|
| 102 |
-
update_elo_components(max_num_files, elo_results_file)
|
| 103 |
-
durtaion = time.time() - tic
|
| 104 |
-
print(f"update duration: {durtaion:.2f} s")
|
| 105 |
-
time.sleep(max(interval - durtaion, 0))
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def load_demo(url_params, request: gr.Request):
|
| 109 |
-
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
| 110 |
-
return basic_component_values + leader_component_values
|
| 111 |
-
|
| 112 |
-
|
| 113 |
def model_hyperlink(model_name, link):
|
| 114 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 115 |
|
| 116 |
|
| 117 |
-
def load_leaderboard_table_csv(filename, add_hyperlink=
|
| 118 |
lines = open(filename).readlines()
|
| 119 |
heads = [v.strip() for v in lines[0].split(",")]
|
| 120 |
rows = []
|
|
@@ -180,9 +162,7 @@ def get_full_table(model_table_df):
|
|
| 180 |
row.append(model_name)
|
| 181 |
row.append(np.nan)
|
| 182 |
row.append(np.nan)
|
| 183 |
-
row.append(np.nan)
|
| 184 |
-
# row.append(model_table_df.iloc[i]["MT-bench (score)"])
|
| 185 |
-
# row.append(model_table_df.iloc[i]["MMLU"])
|
| 186 |
# Organization
|
| 187 |
row.append(model_table_df.iloc[i]["Organization"])
|
| 188 |
# license
|
|
@@ -192,86 +172,6 @@ def get_full_table(model_table_df):
|
|
| 192 |
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
|
| 193 |
return values
|
| 194 |
|
| 195 |
-
def create_ranking_str(ranking, ranking_difference):
|
| 196 |
-
if ranking_difference > 0:
|
| 197 |
-
# return f"{int(ranking)} (\u2191{int(ranking_difference)})"
|
| 198 |
-
return f"{int(ranking)} \u2191"
|
| 199 |
-
elif ranking_difference < 0:
|
| 200 |
-
# return f"{int(ranking)} (\u2193{int(-ranking_difference)})"
|
| 201 |
-
return f"{int(ranking)} \u2193"
|
| 202 |
-
else:
|
| 203 |
-
return f"{int(ranking)}"
|
| 204 |
-
|
| 205 |
-
def recompute_final_ranking(arena_df):
|
| 206 |
-
# compute ranking based on CI
|
| 207 |
-
ranking = {}
|
| 208 |
-
for i, model_a in enumerate(arena_df.index):
|
| 209 |
-
ranking[model_a] = 1
|
| 210 |
-
for j, model_b in enumerate(arena_df.index):
|
| 211 |
-
if i == j:
|
| 212 |
-
continue
|
| 213 |
-
if arena_df.loc[model_b]["rating_q025"] > arena_df.loc[model_a]["rating_q975"]:
|
| 214 |
-
ranking[model_a] += 1
|
| 215 |
-
return list(ranking.values())
|
| 216 |
-
|
| 217 |
-
def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
|
| 218 |
-
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
|
| 219 |
-
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
|
| 220 |
-
arena_df = arena_df.sort_values(by=["final_ranking"], ascending=True)
|
| 221 |
-
|
| 222 |
-
# arena_df["final_ranking"] = range(1, len(arena_df) + 1)
|
| 223 |
-
# sort by rating
|
| 224 |
-
if arena_subset_df is not None:
|
| 225 |
-
# filter out models not in the arena_df
|
| 226 |
-
arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
|
| 227 |
-
arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
|
| 228 |
-
# arena_subset_df = arena_subset_df.sort_values(by=["final_ranking"], ascending=True)
|
| 229 |
-
arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
|
| 230 |
-
# keep only the models in the subset in arena_df and recompute final_ranking
|
| 231 |
-
arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
|
| 232 |
-
# recompute final ranking
|
| 233 |
-
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
|
| 234 |
-
|
| 235 |
-
# assign ranking by the order
|
| 236 |
-
arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
|
| 237 |
-
arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
|
| 238 |
-
# join arena_df and arena_subset_df on index
|
| 239 |
-
arena_df = arena_subset_df.join(arena_df["final_ranking"], rsuffix="_global", how="inner")
|
| 240 |
-
arena_df["ranking_difference"] = arena_df["final_ranking_global"] - arena_df["final_ranking"]
|
| 241 |
-
|
| 242 |
-
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
|
| 243 |
-
arena_df["final_ranking"] = arena_df.apply(lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]), axis=1)
|
| 244 |
-
|
| 245 |
-
values = []
|
| 246 |
-
for i in range(len(arena_df)):
|
| 247 |
-
row = []
|
| 248 |
-
model_key = arena_df.index[i]
|
| 249 |
-
try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models)
|
| 250 |
-
model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
|
| 251 |
-
0
|
| 252 |
-
]
|
| 253 |
-
# rank
|
| 254 |
-
ranking = arena_df.iloc[i].get("final_ranking") or i+1
|
| 255 |
-
row.append(ranking)
|
| 256 |
-
if arena_subset_df is not None:
|
| 257 |
-
row.append(arena_df.iloc[i].get("ranking_difference") or 0)
|
| 258 |
-
# model display name
|
| 259 |
-
row.append(model_name)
|
| 260 |
-
# elo rating
|
| 261 |
-
row.append(round(arena_df.iloc[i]["rating"]))
|
| 262 |
-
# Organization
|
| 263 |
-
row.append(
|
| 264 |
-
model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
|
| 265 |
-
)
|
| 266 |
-
# license
|
| 267 |
-
row.append(
|
| 268 |
-
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
|
| 269 |
-
)
|
| 270 |
-
values.append(row)
|
| 271 |
-
except Exception as e:
|
| 272 |
-
print(f"{model_key} - {e}")
|
| 273 |
-
return values
|
| 274 |
-
|
| 275 |
key_to_category_name = {
|
| 276 |
"full": "Overall",
|
| 277 |
}
|
|
@@ -304,9 +204,8 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
|
|
| 304 |
model_table_df = pd.DataFrame(data)
|
| 305 |
|
| 306 |
with gr.Tabs() as tabs:
|
| 307 |
-
# arena table
|
| 308 |
arena_table_vals = get_full_table(model_table_df)
|
| 309 |
-
with gr.Tab("
|
| 310 |
md = make_arena_leaderboard_md(arena_df)
|
| 311 |
leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown")
|
| 312 |
with gr.Row():
|
|
@@ -350,40 +249,6 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
|
|
| 350 |
|
| 351 |
leader_component_values[:] = [default_md]
|
| 352 |
|
| 353 |
-
# with gr.Tab("Full Leaderboard", id=0):
|
| 354 |
-
# md = make_full_leaderboard_md(elo_results)
|
| 355 |
-
# gr.Markdown(md, elem_id="leaderboard_markdown")
|
| 356 |
-
# with gr.Row():
|
| 357 |
-
# with gr.Column(scale=2):
|
| 358 |
-
# category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Overall")
|
| 359 |
-
# default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Overall")
|
| 360 |
-
# with gr.Column(scale=4, variant="panel"):
|
| 361 |
-
# category_deets = gr.Markdown(default_category_details, elem_id="category_deets")
|
| 362 |
-
|
| 363 |
-
# full_table_vals = get_full_table(model_table_df)
|
| 364 |
-
# display_df = gr.Dataframe(
|
| 365 |
-
# headers=[
|
| 366 |
-
# "π€ Model",
|
| 367 |
-
# "β Task 1",
|
| 368 |
-
# "π Task 2",
|
| 369 |
-
# "π Task 3",
|
| 370 |
-
# "Organization",
|
| 371 |
-
# "License",
|
| 372 |
-
# ],
|
| 373 |
-
# datatype=["markdown", "number", "number", "number", "str", "str"],
|
| 374 |
-
# value=full_table_vals,
|
| 375 |
-
# elem_id="full_leaderboard_dataframe",
|
| 376 |
-
# column_widths=[200, 100, 100, 100, 150, 150],
|
| 377 |
-
# height=700,
|
| 378 |
-
# wrap=True,
|
| 379 |
-
# )
|
| 380 |
-
# gr.Markdown(
|
| 381 |
-
# f"""Note: .
|
| 382 |
-
# """,
|
| 383 |
-
# elem_id="leaderboard_markdown"
|
| 384 |
-
# )
|
| 385 |
-
|
| 386 |
-
# leader_component_values[:] = [default_md]
|
| 387 |
if not show_plot:
|
| 388 |
gr.Markdown(
|
| 389 |
""" ## Submit your model [here]().
|
|
@@ -394,7 +259,7 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
|
|
| 394 |
pass
|
| 395 |
|
| 396 |
def update_leaderboard_df(arena_table_vals):
|
| 397 |
-
elo_datarame = pd.DataFrame(arena_table_vals, columns=[
|
| 398 |
|
| 399 |
# goal: color the rows based on the rank with styler
|
| 400 |
def highlight_max(s):
|
|
@@ -414,51 +279,31 @@ def build_leaderboard_tab(results_file, leaderboard_table_file, show_plot=False)
|
|
| 414 |
arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df = arena_subset_df if category != "Overall" else None)
|
| 415 |
if category != "Overall":
|
| 416 |
arena_values = update_leaderboard_df(arena_values)
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
"π€ Model",
|
| 443 |
-
"β Arena Elo",
|
| 444 |
-
"Organization",
|
| 445 |
-
"License",
|
| 446 |
-
],
|
| 447 |
-
datatype=[
|
| 448 |
-
"number",
|
| 449 |
-
"markdown",
|
| 450 |
-
"number",
|
| 451 |
-
"str",
|
| 452 |
-
"str",
|
| 453 |
-
],
|
| 454 |
-
value=arena_values,
|
| 455 |
-
elem_id="arena_leaderboard_dataframe",
|
| 456 |
-
height=700,
|
| 457 |
-
column_widths=[70, 190, 110, 160, 150, 140],
|
| 458 |
-
wrap=True,
|
| 459 |
-
)
|
| 460 |
-
|
| 461 |
-
|
| 462 |
leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)
|
| 463 |
return arena_values, leaderboard_md
|
| 464 |
|
|
|
|
| 29 |
total_models = len(arena_df)
|
| 30 |
space = " "
|
| 31 |
leaderboard_md = f"""
|
| 32 |
+
Three benchmarks are displayed: **Test Task 1**, **Test Task 2**, **Test Task 3**.
|
| 33 |
+
|
| 34 |
+
Higher values are better for all benchmarks.
|
| 35 |
+
|
| 36 |
+
Total #models: **{total_models}**.{space} Last updated: June 1, 2024.
|
| 37 |
|
| 38 |
"""
|
| 39 |
return leaderboard_md
|
|
|
|
| 49 |
"""
|
| 50 |
return leaderboard_md
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def make_leaderboard_md_live(elo_results):
|
| 54 |
leaderboard_md = f"""
|
|
|
|
| 92 |
basic_component_values[5] = md4
|
| 93 |
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
def model_hyperlink(model_name, link):
|
| 96 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 97 |
|
| 98 |
|
| 99 |
+
def load_leaderboard_table_csv(filename, add_hyperlink=False):
|
| 100 |
lines = open(filename).readlines()
|
| 101 |
heads = [v.strip() for v in lines[0].split(",")]
|
| 102 |
rows = []
|
|
|
|
| 162 |
row.append(model_name)
|
| 163 |
row.append(np.nan)
|
| 164 |
row.append(np.nan)
|
| 165 |
+
row.append(np.nan)\
|
|
|
|
|
|
|
| 166 |
# Organization
|
| 167 |
row.append(model_table_df.iloc[i]["Organization"])
|
| 168 |
# license
|
|
|
|
| 172 |
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
|
| 173 |
return values
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
key_to_category_name = {
|
| 176 |
"full": "Overall",
|
| 177 |
}
|
|
|
|
| 204 |
model_table_df = pd.DataFrame(data)
|
| 205 |
|
| 206 |
with gr.Tabs() as tabs:
|
|
|
|
| 207 |
arena_table_vals = get_full_table(model_table_df)
|
| 208 |
+
with gr.Tab("Full leaderboard", id=0):
|
| 209 |
md = make_arena_leaderboard_md(arena_df)
|
| 210 |
leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown")
|
| 211 |
with gr.Row():
|
|
|
|
| 249 |
|
| 250 |
leader_component_values[:] = [default_md]
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
if not show_plot:
|
| 253 |
gr.Markdown(
|
| 254 |
""" ## Submit your model [here]().
|
|
|
|
| 259 |
pass
|
| 260 |
|
| 261 |
def update_leaderboard_df(arena_table_vals):
|
| 262 |
+
elo_datarame = pd.DataFrame(arena_table_vals, columns=["Rank", "π€ Model", "β Task 1", "π Task 2", "π Task 3", "Organization", "License"])
|
| 263 |
|
| 264 |
# goal: color the rows based on the rank with styler
|
| 265 |
def highlight_max(s):
|
|
|
|
| 279 |
arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df = arena_subset_df if category != "Overall" else None)
|
| 280 |
if category != "Overall":
|
| 281 |
arena_values = update_leaderboard_df(arena_values)
|
| 282 |
+
arena_values = gr.Dataframe(
|
| 283 |
+
headers=[
|
| 284 |
+
"Rank",
|
| 285 |
+
"π€ Model",
|
| 286 |
+
"β Task 1",
|
| 287 |
+
"π Task 2",
|
| 288 |
+
"π Task 3",
|
| 289 |
+
"Organization",
|
| 290 |
+
"License",
|
| 291 |
+
],
|
| 292 |
+
datatype=[
|
| 293 |
+
"number",
|
| 294 |
+
"markdown",
|
| 295 |
+
"number",
|
| 296 |
+
"number",
|
| 297 |
+
"number",
|
| 298 |
+
"str",
|
| 299 |
+
"str",
|
| 300 |
+
],
|
| 301 |
+
value=arena_values,
|
| 302 |
+
elem_id="arena_leaderboard_dataframe",
|
| 303 |
+
height=700,
|
| 304 |
+
column_widths=[70, 190, 110, 110, 110, 150, 140],
|
| 305 |
+
wrap=True,
|
| 306 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)
|
| 308 |
return arena_values, leaderboard_md
|
| 309 |
|