Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
|
| 2 |
+
import ast
|
| 3 |
+
import argparse
|
| 4 |
+
import glob
|
| 5 |
+
import pickle
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
basic_component_values = [None] * 6
|
| 15 |
+
leader_component_values = [None] * 5
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def make_default_md(arena_df, elo_results):
|
| 19 |
+
|
| 20 |
+
leaderboard_md = f"""
|
| 21 |
+
# π
|
| 22 |
+
| [GitHub](https://)
|
| 23 |
+
"""
|
| 24 |
+
return leaderboard_md
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def make_arena_leaderboard_md(arena_df):
|
| 28 |
+
total_votes = sum(arena_df["num_battles"]) // 2
|
| 29 |
+
total_models = len(arena_df)
|
| 30 |
+
|
| 31 |
+
leaderboard_md = f"""
|
| 32 |
+
Last updated: April 9, 2024.
|
| 33 |
+
Find more analysis in the [notebook]({notebook_url}).
|
| 34 |
+
"""
|
| 35 |
+
return leaderboard_md
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def make_full_leaderboard_md(elo_results):
|
| 39 |
+
leaderboard_md = f"""
|
| 40 |
+
enchmarks are displayed:
|
| 41 |
+
"""
|
| 42 |
+
return leaderboard_md
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def make_leaderboard_md_live(elo_results):
|
| 46 |
+
leaderboard_md = f"""
|
| 47 |
+
# Leaderboard
|
| 48 |
+
Last updated: {elo_results["last_updated_datetime"]}
|
| 49 |
+
{elo_results["leaderboard_table"]}
|
| 50 |
+
"""
|
| 51 |
+
return leaderboard_md
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def update_elo_components(max_num_files, elo_results_file):
|
| 55 |
+
log_files = get_log_files(max_num_files)
|
| 56 |
+
|
| 57 |
+
# Leaderboard
|
| 58 |
+
if elo_results_file is None: # Do live update
|
| 59 |
+
battles = clean_battle_data(log_files)
|
| 60 |
+
elo_results = report_elo_analysis_results(battles)
|
| 61 |
+
|
| 62 |
+
leader_component_values[0] = make_leaderboard_md_live(elo_results)
|
| 63 |
+
leader_component_values[1] = elo_results["win_fraction_heatmap"]
|
| 64 |
+
|
| 65 |
+
# Basic stats
|
| 66 |
+
basic_stats = report_basic_stats(log_files)
|
| 67 |
+
md0 = f"Last updated: {basic_stats['last_updated_datetime']}"
|
| 68 |
+
|
| 69 |
+
md1 = "### Action Histogram\n"
|
| 70 |
+
md1 += basic_stats["action_hist_md"] + "\n"
|
| 71 |
+
|
| 72 |
+
basic_component_values[0] = md0
|
| 73 |
+
basic_component_values[1] = basic_stats["chat_dates_bar"]
|
| 74 |
+
basic_component_values[2] = md1]
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def update_worker(max_num_files, interval, elo_results_file):
|
| 78 |
+
while True:
|
| 79 |
+
tic = time.time()
|
| 80 |
+
update_elo_components(max_num_files, elo_results_file)
|
| 81 |
+
durtaion = time.time() - tic
|
| 82 |
+
print(f"update duration: {durtaion:.2f} s")
|
| 83 |
+
time.sleep(max(interval - durtaion, 0))
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def load_demo(url_params, request: gr.Request):
|
| 87 |
+
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
| 88 |
+
return basic_component_values + leader_component_values
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def model_hyperlink(model_name, link):
|
| 92 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def load_leaderboard_table_csv(filename, add_hyperlink=True):
|
| 96 |
+
lines = open(filename).readlines()
|
| 97 |
+
heads = [v.strip() for v in lines[0].split(",")]
|
| 98 |
+
rows = []
|
| 99 |
+
for i in range(1, len(lines)):
|
| 100 |
+
row = [v.strip() for v in lines[i].split(",")]
|
| 101 |
+
for j in range(len(heads)):
|
| 102 |
+
item = {}
|
| 103 |
+
for h, v in zip(heads, row):
|
| 104 |
+
if h == "":
|
| 105 |
+
if v != "-":
|
| 106 |
+
v = int(ast.literal_eval(v))
|
| 107 |
+
else:
|
| 108 |
+
v = np.nan
|
| 109 |
+
item[h] = v
|
| 110 |
+
if add_hyperlink:
|
| 111 |
+
item["Model"] = model_hyperlink(item["Model"], item["Link"])
|
| 112 |
+
rows.append(item)
|
| 113 |
+
|
| 114 |
+
return rows
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def build_basic_stats_tab():
|
| 118 |
+
empty = "Loading ..."
|
| 119 |
+
basic_component_values[:] = [empty, None, empty, empty, empty, empty]
|
| 120 |
+
|
| 121 |
+
md0 = gr.Markdown(empty)
|
| 122 |
+
gr.Markdown("#### Figure 1:")
|
| 123 |
+
plot_1 = gr.Plot(show_label=False)
|
| 124 |
+
with gr.Row():
|
| 125 |
+
with gr.Column():
|
| 126 |
+
md1 = gr.Markdown(empty)
|
| 127 |
+
with gr.Column():
|
| 128 |
+
md2 = gr.Markdown(empty)
|
| 129 |
+
with gr.Row():
|
| 130 |
+
with gr.Column():
|
| 131 |
+
md3 = gr.Markdown(empty)
|
| 132 |
+
with gr.Column():
|
| 133 |
+
md4 = gr.Markdown(empty)
|
| 134 |
+
return [md0, plot_1, md1, md2, md3, md4]
|
| 135 |
+
|
| 136 |
+
def get_full_table(arena_df, model_table_df):
|
| 137 |
+
values = []
|
| 138 |
+
for i in range(len(model_table_df)):
|
| 139 |
+
row = []
|
| 140 |
+
model_key = model_table_df.iloc[i]["key"]
|
| 141 |
+
model_name = model_table_df.iloc[i]["Model"]
|
| 142 |
+
# model display name
|
| 143 |
+
row.append(model_name)
|
| 144 |
+
if model_key in arena_df.index:
|
| 145 |
+
idx = arena_df.index.get_loc(model_key)
|
| 146 |
+
row.append(round(arena_df.iloc[idx]["rating"]))
|
| 147 |
+
else:
|
| 148 |
+
row.append(np.nan)
|
| 149 |
+
# Organization
|
| 150 |
+
row.append(model_table_df.iloc[i]["Organization"])
|
| 151 |
+
# license
|
| 152 |
+
row.append(model_table_df.iloc[i]["License"])
|
| 153 |
+
|
| 154 |
+
values.append(row)
|
| 155 |
+
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
|
| 156 |
+
return values
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def get_arena_table(arena_df, model_table_df):
|
| 160 |
+
# sort by rating
|
| 161 |
+
arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
|
| 162 |
+
values = []
|
| 163 |
+
for i in range(len(arena_df)):
|
| 164 |
+
row = []
|
| 165 |
+
model_key = arena_df.index[i]
|
| 166 |
+
model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
|
| 167 |
+
0
|
| 168 |
+
]
|
| 169 |
+
|
| 170 |
+
# rank
|
| 171 |
+
ranking = arena_df.iloc[i].get("final_ranking") or i+1
|
| 172 |
+
row.append(ranking)
|
| 173 |
+
# model display name
|
| 174 |
+
row.append(model_name)
|
| 175 |
+
# elo rating
|
| 176 |
+
row.append(round(arena_df.iloc[i]["rating"]))
|
| 177 |
+
upper_diff = round(
|
| 178 |
+
arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
|
| 179 |
+
)
|
| 180 |
+
lower_diff = round(
|
| 181 |
+
arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
|
| 182 |
+
)
|
| 183 |
+
row.append(f"+{upper_diff}/-{lower_diff}")
|
| 184 |
+
# num battles
|
| 185 |
+
row.append(round(arena_df.iloc[i]["num_battles"]))
|
| 186 |
+
# Organization
|
| 187 |
+
row.append(
|
| 188 |
+
model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
|
| 189 |
+
)
|
| 190 |
+
# license
|
| 191 |
+
row.append(
|
| 192 |
+
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
cutoff_date = model_table_df[model_table_df["key"] == model_key]["Knowledge cutoff date"].values[0]
|
| 196 |
+
if cutoff_date == "-":
|
| 197 |
+
row.append("Unknown")
|
| 198 |
+
else:
|
| 199 |
+
row.append(cutoff_date)
|
| 200 |
+
values.append(row)
|
| 201 |
+
return values
|
| 202 |
+
|
| 203 |
+
def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False):
|
| 204 |
+
if elo_results_file is None: # Do live update
|
| 205 |
+
default_md = "Loading ..."
|
| 206 |
+
p1 = p2 = p3 = p4 = None
|
| 207 |
+
else:
|
| 208 |
+
with open(elo_results_file, "rb") as fin:
|
| 209 |
+
elo_results = pickle.load(fin)
|
| 210 |
+
if "full" in elo_results:
|
| 211 |
+
elo_results = elo_results["full"]
|
| 212 |
+
|
| 213 |
+
arena_df = elo_results["leaderboard_table_df"]
|
| 214 |
+
default_md = make_default_md(arena_df, elo_results)
|
| 215 |
+
|
| 216 |
+
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
|
| 217 |
+
if leaderboard_table_file:
|
| 218 |
+
data = load_leaderboard_table_csv(leaderboard_table_file)
|
| 219 |
+
model_table_df = pd.DataFrame(data)
|
| 220 |
+
|
| 221 |
+
with gr.Tabs() as tabs:
|
| 222 |
+
# arena table
|
| 223 |
+
arena_table_vals = get_arena_table(arena_df, model_table_df)
|
| 224 |
+
with gr.Tab("Arena Elo", id=0):
|
| 225 |
+
md = make_arena_leaderboard_md(arena_df)
|
| 226 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
| 227 |
+
gr.Dataframe(
|
| 228 |
+
headers=[
|
| 229 |
+
"Rank",
|
| 230 |
+
"π€ Model",
|
| 231 |
+
"Organization",
|
| 232 |
+
"License",
|
| 233 |
+
],
|
| 234 |
+
datatype=[
|
| 235 |
+
"str",
|
| 236 |
+
"markdown",
|
| 237 |
+
"str",
|
| 238 |
+
"str",
|
| 239 |
+
],
|
| 240 |
+
value=arena_table_vals,
|
| 241 |
+
elem_id="arena_leaderboard_dataframe",
|
| 242 |
+
height=700,
|
| 243 |
+
column_widths=[50, 200, 120, 100, 100, 150, 150, 100],
|
| 244 |
+
wrap=True,
|
| 245 |
+
)
|
| 246 |
+
with gr.Tab("Full Leaderboard", id=1):
|
| 247 |
+
md = make_full_leaderboard_md(elo_results)
|
| 248 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
| 249 |
+
full_table_vals = get_full_table(arena_df, model_table_df)
|
| 250 |
+
gr.Dataframe(
|
| 251 |
+
headers=[
|
| 252 |
+
"π€ Model",
|
| 253 |
+
"π MMLU",
|
| 254 |
+
"Organization",
|
| 255 |
+
"License",
|
| 256 |
+
],
|
| 257 |
+
datatype=["markdown", "number", "str", "str"],
|
| 258 |
+
value=full_table_vals,
|
| 259 |
+
elem_id="full_leaderboard_dataframe",
|
| 260 |
+
column_widths=[200, 100, 100, 100, 150, 150],
|
| 261 |
+
height=700,
|
| 262 |
+
wrap=True,
|
| 263 |
+
)
|
| 264 |
+
if not show_plot:
|
| 265 |
+
gr.Markdown(
|
| 266 |
+
""" ## Visit our [HF space](https://huggingface.co/spaces/) for more analysis!
|
| 267 |
+
""",
|
| 268 |
+
elem_id="leaderboard_markdown",
|
| 269 |
+
)
|
| 270 |
+
else:
|
| 271 |
+
pass
|
| 272 |
+
|
| 273 |
+
gr.Markdown(
|
| 274 |
+
f"""
|
| 275 |
+
""",
|
| 276 |
+
elem_id="leaderboard_markdown"
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
leader_component_values[:] = [default_md, p1, p2, p3, p4]
|
| 280 |
+
|
| 281 |
+
if show_plot:
|
| 282 |
+
gr.Markdown(
|
| 283 |
+
f"""## More Statistics\n
|
| 284 |
+
Below are figures for more statistics. The code for generating them is also included in this [notebook]({notebook_url}).
|
| 285 |
+
""",
|
| 286 |
+
elem_id="leaderboard_markdown"
|
| 287 |
+
)
|
| 288 |
+
with gr.Row():
|
| 289 |
+
with gr.Column():
|
| 290 |
+
gr.Markdown(
|
| 291 |
+
"#### Figure 1: "
|
| 292 |
+
)
|
| 293 |
+
with gr.Column():
|
| 294 |
+
gr.Markdown(
|
| 295 |
+
"#### Figure 2: "
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
with gr.Accordion(
|
| 299 |
+
"π Citation",
|
| 300 |
+
open=True,
|
| 301 |
+
):
|
| 302 |
+
citation_md = """
|
| 303 |
+
### Citation
|
| 304 |
+
"""
|
| 305 |
+
gr.Markdown(citation_md, elem_id="leaderboard_markdown")
|
| 306 |
+
gr.Markdown(acknowledgment_md)
|
| 307 |
+
|
| 308 |
+
if show_plot:
|
| 309 |
+
return [md_1, plot_1, plot_2, plot_3, plot_4]
|
| 310 |
+
return [md_1]
|
| 311 |
+
|
| 312 |
+
block_css = """
|
| 313 |
+
#notice_markdown {
|
| 314 |
+
font-size: 104%
|
| 315 |
+
}
|
| 316 |
+
#notice_markdown th {
|
| 317 |
+
display: none;
|
| 318 |
+
}
|
| 319 |
+
#notice_markdown td {
|
| 320 |
+
padding-top: 6px;
|
| 321 |
+
padding-bottom: 6px;
|
| 322 |
+
}
|
| 323 |
+
#leaderboard_markdown {
|
| 324 |
+
font-size: 104%
|
| 325 |
+
}
|
| 326 |
+
#leaderboard_markdown td {
|
| 327 |
+
padding-top: 6px;
|
| 328 |
+
padding-bottom: 6px;
|
| 329 |
+
}
|
| 330 |
+
#leaderboard_dataframe td {
|
| 331 |
+
line-height: 0.1em;
|
| 332 |
+
}
|
| 333 |
+
footer {
|
| 334 |
+
display:none !important
|
| 335 |
+
}
|
| 336 |
+
.sponsor-image-about img {
|
| 337 |
+
margin: 0 20px;
|
| 338 |
+
margin-top: 20px;
|
| 339 |
+
height: 40px;
|
| 340 |
+
max-height: 100%;
|
| 341 |
+
width: auto;
|
| 342 |
+
float: left;
|
| 343 |
+
}
|
| 344 |
+
"""
|
| 345 |
+
|
| 346 |
+
acknowledgment_md = """
|
| 347 |
+
### Acknowledgment
|
| 348 |
+
"""
|
| 349 |
+
|
| 350 |
+
def build_demo(elo_results_file, leaderboard_table_file):
|
| 351 |
+
text_size = gr.themes.sizes.text_lg
|
| 352 |
+
|
| 353 |
+
with gr.Blocks(
|
| 354 |
+
title="Leaderboard",
|
| 355 |
+
theme=gr.themes.Base(text_size=text_size),
|
| 356 |
+
css=block_css,
|
| 357 |
+
) as demo:
|
| 358 |
+
leader_components = build_leaderboard_tab(
|
| 359 |
+
elo_results_file, leaderboard_table_file, show_plot=True
|
| 360 |
+
)
|
| 361 |
+
return demo
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
if __name__ == "__main__":
|
| 365 |
+
parser = argparse.ArgumentParser()
|
| 366 |
+
parser.add_argument("--share", action="store_true")
|
| 367 |
+
args = parser.parse_args()
|
| 368 |
+
|
| 369 |
+
elo_result_files = glob.glob("elo_results_*.pkl")
|
| 370 |
+
elo_result_files.sort(key=lambda x: int(x[12:-4]))
|
| 371 |
+
elo_result_file = elo_result_files[-1]
|
| 372 |
+
|
| 373 |
+
leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
|
| 374 |
+
leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
|
| 375 |
+
leaderboard_table_file = leaderboard_table_files[-1]
|
| 376 |
+
|
| 377 |
+
demo = build_demo(elo_result_file, leaderboard_table_file)
|
| 378 |
+
demo.launch(share=args.share)
|