Spaces:
Running
Running
reference material for MLE derivation
Browse files
probability/19_maximum_likelihood_estimation.py
CHANGED
|
@@ -133,6 +133,8 @@ def _(mo):
|
|
| 133 |
r"""
|
| 134 |
## MLE for Bernoulli Distribution
|
| 135 |
|
|
|
|
|
|
|
| 136 |
Let's start with a simple example: estimating the parameter $p$ of a Bernoulli distribution.
|
| 137 |
|
| 138 |
### The Model
|
|
|
|
| 133 |
r"""
|
| 134 |
## MLE for Bernoulli Distribution
|
| 135 |
|
| 136 |
+
> _Note:_ The following derivation is included as reference material. The credit for this mathematical formulation belongs to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part5/mle/) by Chris Piech.
|
| 137 |
+
|
| 138 |
Let's start with a simple example: estimating the parameter $p$ of a Bernoulli distribution.
|
| 139 |
|
| 140 |
### The Model
|