Spaces:
Runtime error
Runtime error
Martin Tomov
commited on
sam_vit_h_4b8939.pth
Browse files- gsl_utils.py +9 -6
gsl_utils.py
CHANGED
|
@@ -5,17 +5,22 @@ import numpy as np
|
|
| 5 |
from PIL import Image, ImageChops, ImageEnhance
|
| 6 |
import cv2
|
| 7 |
from simple_lama_inpainting import SimpleLama
|
|
|
|
| 8 |
from transformers import pipeline
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
|
| 11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 12 |
|
| 13 |
def load_groundingdino_model(device='cpu'):
|
| 14 |
-
model = pipeline(model="
|
| 15 |
return model
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
groundingdino_model = load_groundingdino_model(device=device)
|
| 18 |
-
sam_predictor =
|
| 19 |
simple_lama = SimpleLama()
|
| 20 |
|
| 21 |
def detect(image, model, text_prompt='insect . flower . cloud', box_threshold=0.15, text_threshold=0.15):
|
|
@@ -24,7 +29,6 @@ def detect(image, model, text_prompt='insect . flower . cloud', box_threshold=0.
|
|
| 24 |
return results
|
| 25 |
|
| 26 |
def segment(image, sam_model, boxes):
|
| 27 |
-
# sam_moded initialized with build_sam
|
| 28 |
sam_model.set_image(image)
|
| 29 |
H, W, _ = image.shape
|
| 30 |
boxes_xyxy = torch.Tensor(boxes) * torch.Tensor([W, H, W, H])
|
|
@@ -59,14 +63,13 @@ def dilate_mask(mask, dilate_factor=15):
|
|
| 59 |
return mask
|
| 60 |
|
| 61 |
def gsl_process_image(image):
|
| 62 |
-
#
|
| 63 |
if not isinstance(image, np.ndarray):
|
| 64 |
image = np.array(image)
|
| 65 |
|
| 66 |
-
# load as a PIL
|
| 67 |
image_pil = Image.fromarray(image)
|
| 68 |
|
| 69 |
-
# detect insects
|
| 70 |
detected_boxes = detect(image_pil, groundingdino_model)
|
| 71 |
boxes = [[d['box']['xmin'], d['box']['ymin'], d['box']['xmax'], d['box']['ymax']] for d in detected_boxes]
|
| 72 |
segmented_frame_masks = segment(image, sam_predictor, boxes)
|
|
|
|
| 5 |
from PIL import Image, ImageChops, ImageEnhance
|
| 6 |
import cv2
|
| 7 |
from simple_lama_inpainting import SimpleLama
|
| 8 |
+
from segment_anything import build_sam, SamPredictor
|
| 9 |
from transformers import pipeline
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
|
| 12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 13 |
|
| 14 |
def load_groundingdino_model(device='cpu'):
|
| 15 |
+
model = pipeline(model="ShilongLiu/GroundingDINO", task="zero-shot-object-detection", device=device)
|
| 16 |
return model
|
| 17 |
|
| 18 |
+
def load_sam_model(device='cpu'):
|
| 19 |
+
sam_model = build_sam(checkpoint='sam_vit_h_4b8939.pth').to(device)
|
| 20 |
+
return SamPredictor(sam_model)
|
| 21 |
+
|
| 22 |
groundingdino_model = load_groundingdino_model(device=device)
|
| 23 |
+
sam_predictor = load_sam_model(device=device)
|
| 24 |
simple_lama = SimpleLama()
|
| 25 |
|
| 26 |
def detect(image, model, text_prompt='insect . flower . cloud', box_threshold=0.15, text_threshold=0.15):
|
|
|
|
| 29 |
return results
|
| 30 |
|
| 31 |
def segment(image, sam_model, boxes):
|
|
|
|
| 32 |
sam_model.set_image(image)
|
| 33 |
H, W, _ = image.shape
|
| 34 |
boxes_xyxy = torch.Tensor(boxes) * torch.Tensor([W, H, W, H])
|
|
|
|
| 63 |
return mask
|
| 64 |
|
| 65 |
def gsl_process_image(image):
|
| 66 |
+
# img numpy array
|
| 67 |
if not isinstance(image, np.ndarray):
|
| 68 |
image = np.array(image)
|
| 69 |
|
| 70 |
+
# load img as a PIL
|
| 71 |
image_pil = Image.fromarray(image)
|
| 72 |
|
|
|
|
| 73 |
detected_boxes = detect(image_pil, groundingdino_model)
|
| 74 |
boxes = [[d['box']['xmin'], d['box']['ymin'], d['box']['xmax'], d['box']['ymax']] for d in detected_boxes]
|
| 75 |
segmented_frame_masks = segment(image, sam_predictor, boxes)
|