Spaces:
Running
on
Zero
Running
on
Zero
refactor a bit
Browse files
app.py
CHANGED
|
@@ -20,10 +20,10 @@ def bot_streaming(message, history):
|
|
| 20 |
|
| 21 |
if message.files:
|
| 22 |
if len(message.files) == 1:
|
| 23 |
-
|
| 24 |
-
# interleaved images
|
| 25 |
elif len(message.files) > 1:
|
| 26 |
-
|
| 27 |
else:
|
| 28 |
|
| 29 |
def has_file_data(lst):
|
|
@@ -38,32 +38,31 @@ def bot_streaming(message, history):
|
|
| 38 |
if all(isinstance(sub_item, str) for sub_item in item):
|
| 39 |
latest_text_only_index = i
|
| 40 |
|
| 41 |
-
|
| 42 |
|
| 43 |
if message.files is None:
|
| 44 |
-
gr.Error("You need to upload an image or
|
| 45 |
|
| 46 |
image_extensions = Image.registered_extensions()
|
| 47 |
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
| 48 |
-
if len(
|
| 49 |
-
image = Image.open(
|
| 50 |
prompt = f"{message.text}<image>"
|
| 51 |
|
| 52 |
-
elif len(
|
| 53 |
image_list = []
|
| 54 |
user_prompt = message.text
|
| 55 |
|
| 56 |
-
for
|
| 57 |
-
|
| 58 |
-
image_list.append(img)
|
| 59 |
|
| 60 |
toks = "<image>" * len(image_list)
|
| 61 |
prompt = user_prompt + toks
|
| 62 |
|
| 63 |
-
|
| 64 |
|
| 65 |
|
| 66 |
-
inputs = processor(prompt,
|
| 67 |
streamer = TextIteratorStreamer(processor, {"skip_special_tokens": True})
|
| 68 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=250)
|
| 69 |
generated_text = ""
|
|
@@ -78,7 +77,7 @@ def bot_streaming(message, history):
|
|
| 78 |
|
| 79 |
buffer += new_text
|
| 80 |
|
| 81 |
-
generated_text_without_prompt = buffer
|
| 82 |
time.sleep(0.01)
|
| 83 |
yield buffer
|
| 84 |
|
|
|
|
| 20 |
|
| 21 |
if message.files:
|
| 22 |
if len(message.files) == 1:
|
| 23 |
+
img = [message.files[0].path]
|
| 24 |
+
# interleaved images
|
| 25 |
elif len(message.files) > 1:
|
| 26 |
+
img = [msg.path for msg in message.files]
|
| 27 |
else:
|
| 28 |
|
| 29 |
def has_file_data(lst):
|
|
|
|
| 38 |
if all(isinstance(sub_item, str) for sub_item in item):
|
| 39 |
latest_text_only_index = i
|
| 40 |
|
| 41 |
+
img = [path for i, item in enumerate(history) if i < latest_text_only_index and has_file_data(item) for path in extract_paths(item)]
|
| 42 |
|
| 43 |
if message.files is None:
|
| 44 |
+
gr.Error("You need to upload an image or multiple images at least once for LLaVA to work.")
|
| 45 |
|
| 46 |
image_extensions = Image.registered_extensions()
|
| 47 |
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
| 48 |
+
if len(img) == 1:
|
| 49 |
+
image = Image.open(img[0]).convert("RGB")
|
| 50 |
prompt = f"{message.text}<image>"
|
| 51 |
|
| 52 |
+
elif len(img) > 1:
|
| 53 |
image_list = []
|
| 54 |
user_prompt = message.text
|
| 55 |
|
| 56 |
+
for im in img:
|
| 57 |
+
image_list.append(Image.open(im).convert("RGB"))
|
|
|
|
| 58 |
|
| 59 |
toks = "<image>" * len(image_list)
|
| 60 |
prompt = user_prompt + toks
|
| 61 |
|
| 62 |
+
img = image_list
|
| 63 |
|
| 64 |
|
| 65 |
+
inputs = processor(prompt, img, return_tensors="pt").to("cuda", torch.float16)
|
| 66 |
streamer = TextIteratorStreamer(processor, {"skip_special_tokens": True})
|
| 67 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=250)
|
| 68 |
generated_text = ""
|
|
|
|
| 77 |
|
| 78 |
buffer += new_text
|
| 79 |
|
| 80 |
+
generated_text_without_prompt = buffer
|
| 81 |
time.sleep(0.01)
|
| 82 |
yield buffer
|
| 83 |
|