Spaces:
Build error
Build error
Update pdf_bot.py
Browse files- pdf_bot.py +8 -4
pdf_bot.py
CHANGED
|
@@ -13,6 +13,7 @@ from groq import Groq
|
|
| 13 |
load_dotenv()
|
| 14 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 15 |
|
|
|
|
| 16 |
class ChatGroq(BaseChatModel):
|
| 17 |
model: str = "llama3-8b-8192"
|
| 18 |
temperature: float = 0.3
|
|
@@ -23,7 +24,7 @@ class ChatGroq(BaseChatModel):
|
|
| 23 |
self.model = model
|
| 24 |
self.temperature = temperature
|
| 25 |
self.groq_api_key = api_key
|
| 26 |
-
self._client = Groq(api_key=api_key)
|
| 27 |
|
| 28 |
def _generate(self, messages, stop=None):
|
| 29 |
prompt = [{"role": "user", "content": self._get_message_text(messages)}]
|
|
@@ -37,16 +38,19 @@ class ChatGroq(BaseChatModel):
|
|
| 37 |
return ChatResult(generations=[ChatGeneration(message=AIMessage(content=content))])
|
| 38 |
|
| 39 |
def _get_message_text(self, messages):
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
@property
|
| 43 |
def _llm_type(self) -> str:
|
| 44 |
return "chat-groq"
|
| 45 |
|
|
|
|
| 46 |
def create_qa_chain_from_pdf(pdf_path):
|
| 47 |
loader = PyPDFLoader(pdf_path)
|
| 48 |
documents = loader.load()
|
| 49 |
-
|
| 50 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 51 |
texts = splitter.split_documents(documents)
|
| 52 |
|
|
@@ -61,4 +65,4 @@ def create_qa_chain_from_pdf(pdf_path):
|
|
| 61 |
retriever=vectorstore.as_retriever(search_kwargs={"k": 1}),
|
| 62 |
return_source_documents=True
|
| 63 |
)
|
| 64 |
-
return qa_chain
|
|
|
|
| 13 |
load_dotenv()
|
| 14 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 15 |
|
| 16 |
+
# ✅ Custom wrapper
|
| 17 |
class ChatGroq(BaseChatModel):
|
| 18 |
model: str = "llama3-8b-8192"
|
| 19 |
temperature: float = 0.3
|
|
|
|
| 24 |
self.model = model
|
| 25 |
self.temperature = temperature
|
| 26 |
self.groq_api_key = api_key
|
| 27 |
+
self._client = Groq(api_key=api_key) # ✅ use _client instead of client
|
| 28 |
|
| 29 |
def _generate(self, messages, stop=None):
|
| 30 |
prompt = [{"role": "user", "content": self._get_message_text(messages)}]
|
|
|
|
| 38 |
return ChatResult(generations=[ChatGeneration(message=AIMessage(content=content))])
|
| 39 |
|
| 40 |
def _get_message_text(self, messages):
|
| 41 |
+
if isinstance(messages, list):
|
| 42 |
+
return " ".join([msg.content for msg in messages])
|
| 43 |
+
return messages.content
|
| 44 |
|
| 45 |
@property
|
| 46 |
def _llm_type(self) -> str:
|
| 47 |
return "chat-groq"
|
| 48 |
|
| 49 |
+
# ✅ Function to return a QA chain
|
| 50 |
def create_qa_chain_from_pdf(pdf_path):
|
| 51 |
loader = PyPDFLoader(pdf_path)
|
| 52 |
documents = loader.load()
|
| 53 |
+
|
| 54 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 55 |
texts = splitter.split_documents(documents)
|
| 56 |
|
|
|
|
| 65 |
retriever=vectorstore.as_retriever(search_kwargs={"k": 1}),
|
| 66 |
return_source_documents=True
|
| 67 |
)
|
| 68 |
+
return qa_chain
|