Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,111 +7,105 @@ from rasterio.windows import Window
|
|
| 7 |
from tqdm.auto import tqdm
|
| 8 |
import io
|
| 9 |
import zipfile
|
| 10 |
-
|
| 11 |
-
# Assuming you have these functions defined elsewhere
|
| 12 |
-
import torch
|
| 13 |
-
import numpy as np
|
| 14 |
-
from PIL import Image
|
| 15 |
import albumentations as albu
|
| 16 |
import segmentation_models_pytorch as smp
|
| 17 |
from albumentations.pytorch.transforms import ToTensorV2
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
ENCODER = 'se_resnext50_32x4d'
|
| 23 |
ENCODER_WEIGHTS = 'imagenet'
|
| 24 |
|
|
|
|
| 25 |
# Load and prepare the model
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def to_tensor(x, **kwargs):
|
| 30 |
-
return x.astype('float32')
|
|
|
|
| 31 |
|
| 32 |
# Preprocessing
|
| 33 |
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
|
| 34 |
|
|
|
|
| 35 |
def get_preprocessing():
|
| 36 |
_transform = [
|
| 37 |
albu.Resize(512, 512),
|
| 38 |
albu.Lambda(image=preprocessing_fn),
|
| 39 |
albu.Lambda(image=to_tensor, mask=to_tensor),
|
| 40 |
ToTensorV2(),
|
| 41 |
-
#albu.Normalize(mean=MEAN,std=STD)
|
| 42 |
-
|
| 43 |
]
|
| 44 |
return albu.Compose(_transform)
|
| 45 |
|
| 46 |
|
| 47 |
preprocess = get_preprocessing()
|
| 48 |
|
|
|
|
| 49 |
@torch.no_grad()
|
| 50 |
def process_and_predict(image, model):
|
| 51 |
-
# Convert PIL Image to numpy array if necessary
|
| 52 |
if isinstance(image, Image.Image):
|
| 53 |
image = np.array(image)
|
| 54 |
-
|
| 55 |
-
# Ensure image is 3-channel
|
| 56 |
if image.ndim == 2:
|
| 57 |
image = np.stack([image] * 3, axis=-1)
|
| 58 |
elif image.shape[2] == 4:
|
| 59 |
image = image[:, :, :3]
|
| 60 |
-
|
| 61 |
-
# Apply preprocessing
|
| 62 |
preprocessed = preprocess(image=image)['image']
|
| 63 |
-
#preprocessed=torch.tensor(preprocessed)
|
| 64 |
-
# Add batch dimension and move to device
|
| 65 |
input_tensor = preprocessed.unsqueeze(0).to(DEVICE)
|
| 66 |
|
| 67 |
-
print(input_tensor.shape)
|
| 68 |
-
# Predict
|
| 69 |
mask = model(input_tensor)
|
| 70 |
mask = torch.sigmoid(mask)
|
| 71 |
mask = (mask > 0.6).float()
|
| 72 |
-
|
| 73 |
-
# Convert to PIL Image
|
| 74 |
mask_image = Image.fromarray((mask.squeeze().cpu().numpy() * 255).astype(np.uint8))
|
| 75 |
-
|
| 76 |
-
return mask_image
|
| 77 |
|
| 78 |
-
|
| 79 |
-
def main(image_path):
|
| 80 |
-
image = Image.open(image_path)
|
| 81 |
-
mask = process_and_predict(image, best_model)
|
| 82 |
-
return mask
|
| 83 |
|
| 84 |
|
| 85 |
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4):
|
| 86 |
tiles = []
|
| 87 |
-
|
| 88 |
with rasterio.open(map_file) as src:
|
| 89 |
height = src.height
|
| 90 |
width = src.width
|
| 91 |
-
|
| 92 |
effective_tile_size = tile_size - overlap
|
| 93 |
-
|
| 94 |
for y in tqdm(range(0, height, effective_tile_size)):
|
| 95 |
for x in range(0, width, effective_tile_size):
|
| 96 |
batch_images = []
|
| 97 |
batch_metas = []
|
| 98 |
-
|
| 99 |
for i in range(batch_size):
|
| 100 |
curr_y = y + (i * effective_tile_size)
|
| 101 |
if curr_y >= height:
|
| 102 |
break
|
| 103 |
-
|
| 104 |
window = Window(x, curr_y, tile_size, tile_size)
|
| 105 |
out_image = src.read(window=window)
|
| 106 |
-
|
| 107 |
if out_image.shape[0] == 1:
|
| 108 |
out_image = np.repeat(out_image, 3, axis=0)
|
| 109 |
elif out_image.shape[0] != 3:
|
| 110 |
raise ValueError("The number of channels in the image is not supported")
|
| 111 |
-
|
| 112 |
out_image = np.transpose(out_image, (1, 2, 0))
|
| 113 |
tile_image = Image.fromarray(out_image.astype(np.uint8))
|
| 114 |
-
|
| 115 |
out_meta = src.meta.copy()
|
| 116 |
out_meta.update({
|
| 117 |
"driver": "GTiff",
|
|
@@ -120,34 +114,66 @@ def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4):
|
|
| 120 |
"transform": rasterio.windows.transform(window, src.transform)
|
| 121 |
})
|
| 122 |
tile_image = np.array(tile_image)
|
| 123 |
-
|
| 124 |
preprocessed_tile = preprocess(image=tile_image)['image']
|
| 125 |
batch_images.append(preprocessed_tile)
|
| 126 |
batch_metas.append(out_meta)
|
| 127 |
-
|
| 128 |
if not batch_images:
|
| 129 |
break
|
| 130 |
-
|
| 131 |
-
# Concatenate batch images
|
| 132 |
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
|
| 133 |
-
# Perform inference on the batch
|
| 134 |
with torch.no_grad():
|
| 135 |
batch_masks = model(batch_tensor.to(DEVICE))
|
| 136 |
-
|
| 137 |
batch_masks = torch.sigmoid(batch_masks)
|
| 138 |
batch_masks = (batch_masks > 0.6).float()
|
| 139 |
-
|
| 140 |
-
# Process each mask in the batch
|
| 141 |
for j, mask_tensor in enumerate(batch_masks):
|
| 142 |
-
mask_resized = torch.nn.functional.interpolate(mask_tensor.unsqueeze(0),
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
mask_array = mask_resized.squeeze().cpu().numpy()
|
| 145 |
-
|
| 146 |
if mask_array.any() == 1:
|
| 147 |
tiles.append([mask_array, batch_metas[j]])
|
| 148 |
-
|
| 149 |
return tiles
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
def main():
|
| 152 |
st.title("TIF File Processor")
|
| 153 |
|
|
@@ -156,38 +182,45 @@ def main():
|
|
| 156 |
if uploaded_file is not None:
|
| 157 |
st.write("File uploaded successfully!")
|
| 158 |
|
| 159 |
-
# Process button
|
| 160 |
if st.button("Process File"):
|
| 161 |
st.write("Processing...")
|
| 162 |
-
|
| 163 |
-
# Save the uploaded file temporarily
|
| 164 |
with open("temp.tif", "wb") as f:
|
| 165 |
f.write(uploaded_file.getbuffer())
|
| 166 |
-
|
| 167 |
-
# Process the file
|
| 168 |
best_model.float()
|
| 169 |
tiles = extract_tiles("temp.tif", best_model, tile_size=512, overlap=15, batch_size=4)
|
| 170 |
-
|
| 171 |
st.write("Processing complete!")
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
if __name__ == "__main__":
|
| 193 |
main()
|
|
|
|
| 7 |
from tqdm.auto import tqdm
|
| 8 |
import io
|
| 9 |
import zipfile
|
| 10 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import albumentations as albu
|
| 12 |
import segmentation_models_pytorch as smp
|
| 13 |
from albumentations.pytorch.transforms import ToTensorV2
|
| 14 |
+
import geopandas as gpd
|
| 15 |
+
from shapely.geometry import shape
|
| 16 |
+
from shapely.ops import unary_union
|
| 17 |
+
from rasterio.features import shapes
|
| 18 |
|
| 19 |
|
| 20 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
ENCODER = 'se_resnext50_32x4d'
|
| 22 |
ENCODER_WEIGHTS = 'imagenet'
|
| 23 |
|
| 24 |
+
|
| 25 |
# Load and prepare the model
|
| 26 |
+
@st.cache_resource
|
| 27 |
+
def load_model():
|
| 28 |
+
model = torch.load(r'C:\Users\MOUAD\Documents\PV panels\application\deeplabv3+ v15.pth', map_location=DEVICE)
|
| 29 |
+
model.eval().float()
|
| 30 |
+
return model
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
best_model = load_model()
|
| 34 |
+
|
| 35 |
|
| 36 |
def to_tensor(x, **kwargs):
|
| 37 |
+
return x.astype('float32')
|
| 38 |
+
|
| 39 |
|
| 40 |
# Preprocessing
|
| 41 |
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
|
| 42 |
|
| 43 |
+
|
| 44 |
def get_preprocessing():
|
| 45 |
_transform = [
|
| 46 |
albu.Resize(512, 512),
|
| 47 |
albu.Lambda(image=preprocessing_fn),
|
| 48 |
albu.Lambda(image=to_tensor, mask=to_tensor),
|
| 49 |
ToTensorV2(),
|
|
|
|
|
|
|
| 50 |
]
|
| 51 |
return albu.Compose(_transform)
|
| 52 |
|
| 53 |
|
| 54 |
preprocess = get_preprocessing()
|
| 55 |
|
| 56 |
+
|
| 57 |
@torch.no_grad()
|
| 58 |
def process_and_predict(image, model):
|
|
|
|
| 59 |
if isinstance(image, Image.Image):
|
| 60 |
image = np.array(image)
|
| 61 |
+
|
|
|
|
| 62 |
if image.ndim == 2:
|
| 63 |
image = np.stack([image] * 3, axis=-1)
|
| 64 |
elif image.shape[2] == 4:
|
| 65 |
image = image[:, :, :3]
|
| 66 |
+
|
|
|
|
| 67 |
preprocessed = preprocess(image=image)['image']
|
|
|
|
|
|
|
| 68 |
input_tensor = preprocessed.unsqueeze(0).to(DEVICE)
|
| 69 |
|
|
|
|
|
|
|
| 70 |
mask = model(input_tensor)
|
| 71 |
mask = torch.sigmoid(mask)
|
| 72 |
mask = (mask > 0.6).float()
|
| 73 |
+
|
|
|
|
| 74 |
mask_image = Image.fromarray((mask.squeeze().cpu().numpy() * 255).astype(np.uint8))
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
return mask_image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4):
|
| 80 |
tiles = []
|
| 81 |
+
|
| 82 |
with rasterio.open(map_file) as src:
|
| 83 |
height = src.height
|
| 84 |
width = src.width
|
| 85 |
+
|
| 86 |
effective_tile_size = tile_size - overlap
|
| 87 |
+
|
| 88 |
for y in tqdm(range(0, height, effective_tile_size)):
|
| 89 |
for x in range(0, width, effective_tile_size):
|
| 90 |
batch_images = []
|
| 91 |
batch_metas = []
|
| 92 |
+
|
| 93 |
for i in range(batch_size):
|
| 94 |
curr_y = y + (i * effective_tile_size)
|
| 95 |
if curr_y >= height:
|
| 96 |
break
|
| 97 |
+
|
| 98 |
window = Window(x, curr_y, tile_size, tile_size)
|
| 99 |
out_image = src.read(window=window)
|
| 100 |
+
|
| 101 |
if out_image.shape[0] == 1:
|
| 102 |
out_image = np.repeat(out_image, 3, axis=0)
|
| 103 |
elif out_image.shape[0] != 3:
|
| 104 |
raise ValueError("The number of channels in the image is not supported")
|
| 105 |
+
|
| 106 |
out_image = np.transpose(out_image, (1, 2, 0))
|
| 107 |
tile_image = Image.fromarray(out_image.astype(np.uint8))
|
| 108 |
+
|
| 109 |
out_meta = src.meta.copy()
|
| 110 |
out_meta.update({
|
| 111 |
"driver": "GTiff",
|
|
|
|
| 114 |
"transform": rasterio.windows.transform(window, src.transform)
|
| 115 |
})
|
| 116 |
tile_image = np.array(tile_image)
|
| 117 |
+
|
| 118 |
preprocessed_tile = preprocess(image=tile_image)['image']
|
| 119 |
batch_images.append(preprocessed_tile)
|
| 120 |
batch_metas.append(out_meta)
|
| 121 |
+
|
| 122 |
if not batch_images:
|
| 123 |
break
|
| 124 |
+
|
|
|
|
| 125 |
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
|
|
|
|
| 126 |
with torch.no_grad():
|
| 127 |
batch_masks = model(batch_tensor.to(DEVICE))
|
| 128 |
+
|
| 129 |
batch_masks = torch.sigmoid(batch_masks)
|
| 130 |
batch_masks = (batch_masks > 0.6).float()
|
| 131 |
+
|
|
|
|
| 132 |
for j, mask_tensor in enumerate(batch_masks):
|
| 133 |
+
mask_resized = torch.nn.functional.interpolate(mask_tensor.unsqueeze(0),
|
| 134 |
+
size=(tile_size, tile_size), mode='bilinear',
|
| 135 |
+
align_corners=False).squeeze(0)
|
| 136 |
+
|
| 137 |
mask_array = mask_resized.squeeze().cpu().numpy()
|
| 138 |
+
|
| 139 |
if mask_array.any() == 1:
|
| 140 |
tiles.append([mask_array, batch_metas[j]])
|
| 141 |
+
|
| 142 |
return tiles
|
| 143 |
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def create_vector_mask(tiles, output_path):
|
| 150 |
+
all_polygons = []
|
| 151 |
+
for mask_array, meta in tiles:
|
| 152 |
+
# Ensure mask is binary
|
| 153 |
+
mask_array = (mask_array > 0).astype(np.uint8)
|
| 154 |
+
|
| 155 |
+
# Get shapes from the mask
|
| 156 |
+
mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))
|
| 157 |
+
|
| 158 |
+
# Convert shapes to Shapely polygons
|
| 159 |
+
polygons = [shape(geom) for geom, value in mask_shapes if value == 1]
|
| 160 |
+
|
| 161 |
+
all_polygons.extend(polygons)
|
| 162 |
+
# Perform union of all polygons
|
| 163 |
+
union_polygon = unary_union(all_polygons)
|
| 164 |
+
# Create a GeoDataFrame
|
| 165 |
+
gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
|
| 166 |
+
# Save to file
|
| 167 |
+
gdf.to_file(output_path)
|
| 168 |
+
|
| 169 |
+
# Calculate area in square meters
|
| 170 |
+
area_m2 = gdf.to_crs(epsg=3857).area.sum()
|
| 171 |
+
# Convert to hectares
|
| 172 |
+
area_ha = area_m2 / 10000
|
| 173 |
+
|
| 174 |
+
return gdf, area_ha
|
| 175 |
+
|
| 176 |
+
|
| 177 |
def main():
|
| 178 |
st.title("TIF File Processor")
|
| 179 |
|
|
|
|
| 182 |
if uploaded_file is not None:
|
| 183 |
st.write("File uploaded successfully!")
|
| 184 |
|
|
|
|
| 185 |
if st.button("Process File"):
|
| 186 |
st.write("Processing...")
|
| 187 |
+
|
|
|
|
| 188 |
with open("temp.tif", "wb") as f:
|
| 189 |
f.write(uploaded_file.getbuffer())
|
| 190 |
+
|
|
|
|
| 191 |
best_model.float()
|
| 192 |
tiles = extract_tiles("temp.tif", best_model, tile_size=512, overlap=15, batch_size=4)
|
| 193 |
+
|
| 194 |
st.write("Processing complete!")
|
| 195 |
|
| 196 |
+
output_path = "output_mask.shp"
|
| 197 |
+
result_gdf, area_ha = create_vector_mask(tiles, output_path)
|
| 198 |
+
|
| 199 |
+
st.write("Vector mask created successfully!")
|
| 200 |
+
st.write(f"Total area occupied by polygons: {area_ha:.2f} hectares")
|
| 201 |
+
|
| 202 |
+
# Offer the shapefile for download
|
| 203 |
+
shp_files = [f for f in os.listdir() if
|
| 204 |
+
f.startswith("output_mask") and f.endswith((".shp", ".shx", ".dbf", ".prj"))]
|
| 205 |
+
|
| 206 |
+
with io.BytesIO() as zip_buffer:
|
| 207 |
+
with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED, False) as zip_file:
|
| 208 |
+
for file in shp_files:
|
| 209 |
+
zip_file.write(file)
|
| 210 |
+
|
| 211 |
+
zip_buffer.seek(0)
|
| 212 |
+
st.download_button(
|
| 213 |
+
label="Download shapefile",
|
| 214 |
+
data=zip_buffer,
|
| 215 |
+
file_name="output_mask.zip",
|
| 216 |
+
mime="application/zip"
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# Clean up temporary files
|
| 220 |
+
os.remove("temp.tif")
|
| 221 |
+
for file in shp_files:
|
| 222 |
+
os.remove(file)
|
| 223 |
+
|
| 224 |
|
| 225 |
if __name__ == "__main__":
|
| 226 |
main()
|