Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import rasterio
|
| 6 |
+
from rasterio.windows import Window
|
| 7 |
+
from tqdm.auto import tqdm
|
| 8 |
+
import io
|
| 9 |
+
import zipfile
|
| 10 |
+
|
| 11 |
+
# Assuming you have these functions defined elsewhere
|
| 12 |
+
from your_module import preprocess, best_model, DEVICE
|
| 13 |
+
|
| 14 |
+
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4):
|
| 15 |
+
tiles = []
|
| 16 |
+
|
| 17 |
+
with rasterio.open(map_file) as src:
|
| 18 |
+
height = src.height
|
| 19 |
+
width = src.width
|
| 20 |
+
|
| 21 |
+
effective_tile_size = tile_size - overlap
|
| 22 |
+
|
| 23 |
+
for y in tqdm(range(0, height, effective_tile_size)):
|
| 24 |
+
for x in range(0, width, effective_tile_size):
|
| 25 |
+
batch_images = []
|
| 26 |
+
batch_metas = []
|
| 27 |
+
|
| 28 |
+
for i in range(batch_size):
|
| 29 |
+
curr_y = y + (i * effective_tile_size)
|
| 30 |
+
if curr_y >= height:
|
| 31 |
+
break
|
| 32 |
+
|
| 33 |
+
window = Window(x, curr_y, tile_size, tile_size)
|
| 34 |
+
out_image = src.read(window=window)
|
| 35 |
+
|
| 36 |
+
if out_image.shape[0] == 1:
|
| 37 |
+
out_image = np.repeat(out_image, 3, axis=0)
|
| 38 |
+
elif out_image.shape[0] != 3:
|
| 39 |
+
raise ValueError("The number of channels in the image is not supported")
|
| 40 |
+
|
| 41 |
+
out_image = np.transpose(out_image, (1, 2, 0))
|
| 42 |
+
tile_image = Image.fromarray(out_image.astype(np.uint8))
|
| 43 |
+
|
| 44 |
+
out_meta = src.meta.copy()
|
| 45 |
+
out_meta.update({
|
| 46 |
+
"driver": "GTiff",
|
| 47 |
+
"height": tile_size,
|
| 48 |
+
"width": tile_size,
|
| 49 |
+
"transform": rasterio.windows.transform(window, src.transform)
|
| 50 |
+
})
|
| 51 |
+
tile_image = np.array(tile_image)
|
| 52 |
+
|
| 53 |
+
preprocessed_tile = preprocess(image=tile_image)['image']
|
| 54 |
+
batch_images.append(preprocessed_tile)
|
| 55 |
+
batch_metas.append(out_meta)
|
| 56 |
+
|
| 57 |
+
if not batch_images:
|
| 58 |
+
break
|
| 59 |
+
|
| 60 |
+
# Concatenate batch images
|
| 61 |
+
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
|
| 62 |
+
# Perform inference on the batch
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
batch_masks = model(batch_tensor.to(DEVICE))
|
| 65 |
+
|
| 66 |
+
batch_masks = torch.sigmoid(batch_masks)
|
| 67 |
+
batch_masks = (batch_masks > 0.6).float()
|
| 68 |
+
|
| 69 |
+
# Process each mask in the batch
|
| 70 |
+
for j, mask_tensor in enumerate(batch_masks):
|
| 71 |
+
mask_resized = torch.nn.functional.interpolate(mask_tensor.unsqueeze(0), size=(tile_size, tile_size), mode='bilinear', align_corners=False).squeeze(0)
|
| 72 |
+
|
| 73 |
+
mask_array = mask_resized.squeeze().cpu().numpy()
|
| 74 |
+
|
| 75 |
+
if mask_array.any() == 1:
|
| 76 |
+
tiles.append([mask_array, batch_metas[j]])
|
| 77 |
+
|
| 78 |
+
return tiles
|
| 79 |
+
|
| 80 |
+
def main():
|
| 81 |
+
st.title("TIF File Processor")
|
| 82 |
+
|
| 83 |
+
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
|
| 84 |
+
|
| 85 |
+
if uploaded_file is not None:
|
| 86 |
+
st.write("File uploaded successfully!")
|
| 87 |
+
|
| 88 |
+
# Process button
|
| 89 |
+
if st.button("Process File"):
|
| 90 |
+
st.write("Processing...")
|
| 91 |
+
|
| 92 |
+
# Save the uploaded file temporarily
|
| 93 |
+
with open("temp.tif", "wb") as f:
|
| 94 |
+
f.write(uploaded_file.getbuffer())
|
| 95 |
+
|
| 96 |
+
# Process the file
|
| 97 |
+
best_model.float()
|
| 98 |
+
tiles = extract_tiles("temp.tif", best_model, tile_size=512, overlap=15, batch_size=4)
|
| 99 |
+
|
| 100 |
+
st.write("Processing complete!")
|
| 101 |
+
|
| 102 |
+
# Prepare zip file for download
|
| 103 |
+
zip_buffer = io.BytesIO()
|
| 104 |
+
with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED, False) as zip_file:
|
| 105 |
+
for i, (mask_array, meta) in enumerate(tiles):
|
| 106 |
+
# Save each tile as a separate TIF file
|
| 107 |
+
with rasterio.open(f"tile_{i}.tif", 'w', **meta) as dst:
|
| 108 |
+
dst.write(mask_array, 1)
|
| 109 |
+
|
| 110 |
+
# Add the tile to the zip file
|
| 111 |
+
zip_file.write(f"tile_{i}.tif")
|
| 112 |
+
|
| 113 |
+
# Offer the zip file for download
|
| 114 |
+
st.download_button(
|
| 115 |
+
label="Download processed tiles",
|
| 116 |
+
data=zip_buffer.getvalue(),
|
| 117 |
+
file_name="processed_tiles.zip",
|
| 118 |
+
mime="application/zip"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
main()
|