Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,30 +16,31 @@ from shapely.ops import unary_union
|
|
| 16 |
from rasterio.features import shapes
|
| 17 |
import torch
|
| 18 |
import numpy as np
|
| 19 |
-
import tempfile
|
| 20 |
|
| 21 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
ENCODER = 'se_resnext50_32x4d'
|
| 23 |
ENCODER_WEIGHTS = 'imagenet'
|
| 24 |
|
| 25 |
-
# Define a known temporary directory
|
| 26 |
-
TEMP_DIR = "/tmp"
|
| 27 |
|
| 28 |
-
#model
|
| 29 |
@st.cache_resource
|
| 30 |
def load_model():
|
| 31 |
model = torch.load('deeplabv3 v15.pth', map_location=DEVICE)
|
| 32 |
model.eval().float()
|
| 33 |
return model
|
| 34 |
|
|
|
|
| 35 |
best_model = load_model()
|
| 36 |
|
|
|
|
| 37 |
def to_tensor(x, **kwargs):
|
| 38 |
return x.astype('float32')
|
| 39 |
|
|
|
|
| 40 |
# Preprocessing
|
| 41 |
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
|
| 42 |
|
|
|
|
| 43 |
def get_preprocessing(tile_size):
|
| 44 |
_transform = [
|
| 45 |
albu.PadIfNeeded(min_height=tile_size, min_width=tile_size, always_apply=True),
|
|
@@ -49,13 +50,20 @@ def get_preprocessing(tile_size):
|
|
| 49 |
]
|
| 50 |
return albu.Compose(_transform)
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6):
|
|
|
|
| 53 |
preprocess = get_preprocessing(tile_size)
|
|
|
|
| 54 |
tiles = []
|
| 55 |
|
| 56 |
with rasterio.open(map_file) as src:
|
| 57 |
height = src.height
|
| 58 |
width = src.width
|
|
|
|
| 59 |
effective_tile_size = tile_size - overlap
|
| 60 |
|
| 61 |
for y in stqdm(range(0, height, effective_tile_size)):
|
|
@@ -114,6 +122,7 @@ def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, thres
|
|
| 114 |
|
| 115 |
return tiles
|
| 116 |
|
|
|
|
| 117 |
def create_vector_mask(tiles, output_path):
|
| 118 |
all_polygons = []
|
| 119 |
for mask_array, meta in tiles:
|
|
@@ -139,6 +148,7 @@ def create_vector_mask(tiles, output_path):
|
|
| 139 |
|
| 140 |
return gdf, area_m2
|
| 141 |
|
|
|
|
| 142 |
def display_map(shapefile_path, tif_path):
|
| 143 |
st.title("Map with Shape and TIFF Overlay")
|
| 144 |
|
|
@@ -169,10 +179,8 @@ def display_map(shapefile_path, tif_path):
|
|
| 169 |
# Display the map in Streamlit
|
| 170 |
m.to_streamlit()
|
| 171 |
|
|
|
|
| 172 |
def main():
|
| 173 |
-
current_directory = os.getcwd()
|
| 174 |
-
st.write('current directory:', current_directory)
|
| 175 |
-
|
| 176 |
st.title("PV Segmentor")
|
| 177 |
|
| 178 |
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
|
|
@@ -180,10 +188,14 @@ def main():
|
|
| 180 |
if uploaded_file is not None:
|
| 181 |
st.write("File uploaded successfully!")
|
| 182 |
|
|
|
|
| 183 |
resolution = st.radio(
|
| 184 |
-
|
|
|
|
|
|
|
| 185 |
(512, 1024),
|
| 186 |
index=0
|
|
|
|
| 187 |
)
|
| 188 |
overlap = st.slider(
|
| 189 |
'Select the value of overlap',
|
|
@@ -200,39 +212,37 @@ def main():
|
|
| 200 |
step=0.01
|
| 201 |
)
|
| 202 |
|
| 203 |
-
st.write('You selected:',
|
| 204 |
st.write('Selected overlap value:', overlap)
|
| 205 |
st.write('Selected threshold value:', threshold)
|
| 206 |
|
|
|
|
|
|
|
| 207 |
if st.button("Process File"):
|
| 208 |
st.write("Processing...")
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
temp_filepath = temp_file.name
|
| 213 |
-
temp_file.write(uploaded_file.getbuffer())
|
| 214 |
-
|
| 215 |
-
st.write(f"Temporary file saved at: {temp_filepath}")
|
| 216 |
|
| 217 |
best_model.float()
|
| 218 |
-
tiles = extract_tiles(
|
| 219 |
|
| 220 |
st.write("Processing complete!")
|
| 221 |
|
| 222 |
-
output_path =
|
| 223 |
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
|
| 224 |
|
| 225 |
st.write("Vector mask created successfully!")
|
| 226 |
st.write(f"Total area occupied by PV panels: {area_m2:.4f} m^2")
|
| 227 |
|
| 228 |
# Offer the shapefile for download
|
| 229 |
-
shp_files = [f for f in os.listdir(
|
| 230 |
f.startswith("output_mask") and f.endswith((".shp", ".shx", ".dbf", ".prj"))]
|
| 231 |
|
| 232 |
with io.BytesIO() as zip_buffer:
|
| 233 |
with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED, False) as zip_file:
|
| 234 |
for file in shp_files:
|
| 235 |
-
zip_file.write(
|
| 236 |
|
| 237 |
zip_buffer.seek(0)
|
| 238 |
st.download_button(
|
|
@@ -243,14 +253,13 @@ def main():
|
|
| 243 |
)
|
| 244 |
|
| 245 |
# Display the map with the predicted shapefile
|
| 246 |
-
display_map(
|
| 247 |
|
| 248 |
# Clean up temporary files
|
| 249 |
-
#os.
|
| 250 |
-
#st.write(f"Temporary file removed: {temp_filepath}")
|
| 251 |
#for file in shp_files:
|
| 252 |
-
|
| 253 |
-
|
| 254 |
|
| 255 |
if __name__ == "__main__":
|
| 256 |
main()
|
|
|
|
| 16 |
from rasterio.features import shapes
|
| 17 |
import torch
|
| 18 |
import numpy as np
|
|
|
|
| 19 |
|
| 20 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
ENCODER = 'se_resnext50_32x4d'
|
| 22 |
ENCODER_WEIGHTS = 'imagenet'
|
| 23 |
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Load and prepare the model
|
| 26 |
@st.cache_resource
|
| 27 |
def load_model():
|
| 28 |
model = torch.load('deeplabv3 v15.pth', map_location=DEVICE)
|
| 29 |
model.eval().float()
|
| 30 |
return model
|
| 31 |
|
| 32 |
+
|
| 33 |
best_model = load_model()
|
| 34 |
|
| 35 |
+
|
| 36 |
def to_tensor(x, **kwargs):
|
| 37 |
return x.astype('float32')
|
| 38 |
|
| 39 |
+
|
| 40 |
# Preprocessing
|
| 41 |
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
|
| 42 |
|
| 43 |
+
|
| 44 |
def get_preprocessing(tile_size):
|
| 45 |
_transform = [
|
| 46 |
albu.PadIfNeeded(min_height=tile_size, min_width=tile_size, always_apply=True),
|
|
|
|
| 50 |
]
|
| 51 |
return albu.Compose(_transform)
|
| 52 |
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6):
|
| 58 |
+
|
| 59 |
preprocess = get_preprocessing(tile_size)
|
| 60 |
+
|
| 61 |
tiles = []
|
| 62 |
|
| 63 |
with rasterio.open(map_file) as src:
|
| 64 |
height = src.height
|
| 65 |
width = src.width
|
| 66 |
+
|
| 67 |
effective_tile_size = tile_size - overlap
|
| 68 |
|
| 69 |
for y in stqdm(range(0, height, effective_tile_size)):
|
|
|
|
| 122 |
|
| 123 |
return tiles
|
| 124 |
|
| 125 |
+
|
| 126 |
def create_vector_mask(tiles, output_path):
|
| 127 |
all_polygons = []
|
| 128 |
for mask_array, meta in tiles:
|
|
|
|
| 148 |
|
| 149 |
return gdf, area_m2
|
| 150 |
|
| 151 |
+
|
| 152 |
def display_map(shapefile_path, tif_path):
|
| 153 |
st.title("Map with Shape and TIFF Overlay")
|
| 154 |
|
|
|
|
| 179 |
# Display the map in Streamlit
|
| 180 |
m.to_streamlit()
|
| 181 |
|
| 182 |
+
|
| 183 |
def main():
|
|
|
|
|
|
|
|
|
|
| 184 |
st.title("PV Segmentor")
|
| 185 |
|
| 186 |
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
|
|
|
|
| 188 |
if uploaded_file is not None:
|
| 189 |
st.write("File uploaded successfully!")
|
| 190 |
|
| 191 |
+
|
| 192 |
resolution = st.radio(
|
| 193 |
+
|
| 194 |
+
"Selext Processing resolution:",
|
| 195 |
+
|
| 196 |
(512, 1024),
|
| 197 |
index=0
|
| 198 |
+
|
| 199 |
)
|
| 200 |
overlap = st.slider(
|
| 201 |
'Select the value of overlap',
|
|
|
|
| 212 |
step=0.01
|
| 213 |
)
|
| 214 |
|
| 215 |
+
st.write('You selected:',resolution)
|
| 216 |
st.write('Selected overlap value:', overlap)
|
| 217 |
st.write('Selected threshold value:', threshold)
|
| 218 |
|
| 219 |
+
|
| 220 |
+
|
| 221 |
if st.button("Process File"):
|
| 222 |
st.write("Processing...")
|
| 223 |
|
| 224 |
+
with open("temp.tif", "wb") as f:
|
| 225 |
+
f.write(uploaded_file.getbuffer())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
best_model.float()
|
| 228 |
+
tiles = extract_tiles("temp.tif", best_model, tile_size=resolution, overlap=overlap, batch_size=4, threshold=threshold)
|
| 229 |
|
| 230 |
st.write("Processing complete!")
|
| 231 |
|
| 232 |
+
output_path = "output_mask.shp"
|
| 233 |
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
|
| 234 |
|
| 235 |
st.write("Vector mask created successfully!")
|
| 236 |
st.write(f"Total area occupied by PV panels: {area_m2:.4f} m^2")
|
| 237 |
|
| 238 |
# Offer the shapefile for download
|
| 239 |
+
shp_files = [f for f in os.listdir() if
|
| 240 |
f.startswith("output_mask") and f.endswith((".shp", ".shx", ".dbf", ".prj"))]
|
| 241 |
|
| 242 |
with io.BytesIO() as zip_buffer:
|
| 243 |
with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED, False) as zip_file:
|
| 244 |
for file in shp_files:
|
| 245 |
+
zip_file.write(file)
|
| 246 |
|
| 247 |
zip_buffer.seek(0)
|
| 248 |
st.download_button(
|
|
|
|
| 253 |
)
|
| 254 |
|
| 255 |
# Display the map with the predicted shapefile
|
| 256 |
+
display_map("output_mask.shp", "temp.tif")
|
| 257 |
|
| 258 |
# Clean up temporary files
|
| 259 |
+
#os.remove("temp.tif")
|
|
|
|
| 260 |
#for file in shp_files:
|
| 261 |
+
# os.remove(file)
|
| 262 |
+
|
| 263 |
|
| 264 |
if __name__ == "__main__":
|
| 265 |
main()
|