Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
from PIL import Image
|
| 5 |
import rasterio
|
| 6 |
from rasterio.windows import Window
|
|
@@ -11,11 +11,11 @@ import os
|
|
| 11 |
import albumentations as albu
|
| 12 |
import segmentation_models_pytorch as smp
|
| 13 |
from albumentations.pytorch.transforms import ToTensorV2
|
| 14 |
-
import geopandas as gpd
|
| 15 |
from shapely.geometry import shape
|
| 16 |
from shapely.ops import unary_union
|
| 17 |
from rasterio.features import shapes
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
ENCODER = 'se_resnext50_32x4d'
|
|
@@ -25,7 +25,7 @@ ENCODER_WEIGHTS = 'imagenet'
|
|
| 25 |
# Load and prepare the model
|
| 26 |
@st.cache_resource
|
| 27 |
def load_model():
|
| 28 |
-
model = torch.load('deeplabv3 v15.pth', map_location=DEVICE)
|
| 29 |
model.eval().float()
|
| 30 |
return model
|
| 31 |
|
|
@@ -76,7 +76,7 @@ def process_and_predict(image, model):
|
|
| 76 |
return mask_image
|
| 77 |
|
| 78 |
|
| 79 |
-
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4,threshold=0.6):
|
| 80 |
tiles = []
|
| 81 |
|
| 82 |
with rasterio.open(map_file) as src:
|
|
@@ -113,8 +113,8 @@ def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4,thresh
|
|
| 113 |
"width": tile_size,
|
| 114 |
"transform": rasterio.windows.transform(window, src.transform)
|
| 115 |
})
|
| 116 |
-
tile_image = np.array(tile_image)
|
| 117 |
|
|
|
|
| 118 |
preprocessed_tile = preprocess(image=tile_image)['image']
|
| 119 |
batch_images.append(preprocessed_tile)
|
| 120 |
batch_metas.append(out_meta)
|
|
@@ -124,7 +124,7 @@ def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4,thresh
|
|
| 124 |
|
| 125 |
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
|
| 126 |
with torch.no_grad():
|
| 127 |
-
batch_masks = model(batch_tensor
|
| 128 |
|
| 129 |
batch_masks = torch.sigmoid(batch_masks)
|
| 130 |
batch_masks = (batch_masks > threshold).float()
|
|
@@ -142,58 +142,76 @@ def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4,thresh
|
|
| 142 |
return tiles
|
| 143 |
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
def create_vector_mask(tiles, output_path):
|
| 150 |
all_polygons = []
|
| 151 |
for mask_array, meta in tiles:
|
| 152 |
-
|
| 153 |
mask_array = (mask_array > 0).astype(np.uint8)
|
| 154 |
|
| 155 |
-
# Get shapes from the mask
|
| 156 |
mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))
|
| 157 |
|
| 158 |
-
#
|
| 159 |
polygons = [shape(geom) for geom, value in mask_shapes if value == 1]
|
| 160 |
|
| 161 |
all_polygons.extend(polygons)
|
| 162 |
-
#
|
| 163 |
union_polygon = unary_union(all_polygons)
|
| 164 |
-
#
|
| 165 |
gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
|
| 166 |
# Save to file
|
| 167 |
gdf.to_file(output_path)
|
| 168 |
|
| 169 |
-
#
|
| 170 |
area_m2 = gdf.to_crs(epsg=3857).area.sum()
|
| 171 |
-
# Convert to hectares
|
| 172 |
|
| 173 |
return gdf, area_m2
|
| 174 |
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
def main():
|
| 177 |
-
st.title("PV
|
| 178 |
|
| 179 |
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
|
| 180 |
|
| 181 |
if uploaded_file is not None:
|
| 182 |
st.write("File uploaded successfully!")
|
| 183 |
|
| 184 |
-
threshold= st.slider(
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
)
|
| 191 |
-
overlap= st.slider(
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
)
|
| 198 |
st.write('Selected threshold value:', threshold)
|
| 199 |
st.write('Selected overlap value:', overlap)
|
|
@@ -205,7 +223,7 @@ def main():
|
|
| 205 |
f.write(uploaded_file.getbuffer())
|
| 206 |
|
| 207 |
best_model.float()
|
| 208 |
-
tiles = extract_tiles("temp.tif", best_model, tile_size=512, overlap=overlap, batch_size=4,threshold=threshold)
|
| 209 |
|
| 210 |
st.write("Processing complete!")
|
| 211 |
|
|
@@ -213,7 +231,7 @@ def main():
|
|
| 213 |
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
|
| 214 |
|
| 215 |
st.write("Vector mask created successfully!")
|
| 216 |
-
st.write(f"Total area occupied by
|
| 217 |
|
| 218 |
# Offer the shapefile for download
|
| 219 |
shp_files = [f for f in os.listdir() if
|
|
@@ -232,11 +250,12 @@ def main():
|
|
| 232 |
mime="application/zip"
|
| 233 |
)
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
|
|
|
| 239 |
|
| 240 |
|
| 241 |
if __name__ == "__main__":
|
| 242 |
-
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import geopandas as gpd
|
| 3 |
+
import leafmap.foliumap as leafmap
|
| 4 |
from PIL import Image
|
| 5 |
import rasterio
|
| 6 |
from rasterio.windows import Window
|
|
|
|
| 11 |
import albumentations as albu
|
| 12 |
import segmentation_models_pytorch as smp
|
| 13 |
from albumentations.pytorch.transforms import ToTensorV2
|
|
|
|
| 14 |
from shapely.geometry import shape
|
| 15 |
from shapely.ops import unary_union
|
| 16 |
from rasterio.features import shapes
|
| 17 |
+
import torch
|
| 18 |
+
import numpy as np
|
| 19 |
|
| 20 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
ENCODER = 'se_resnext50_32x4d'
|
|
|
|
| 25 |
# Load and prepare the model
|
| 26 |
@st.cache_resource
|
| 27 |
def load_model():
|
| 28 |
+
model = torch.load('deeplabv3+ v15.pth', map_location=DEVICE)
|
| 29 |
model.eval().float()
|
| 30 |
return model
|
| 31 |
|
|
|
|
| 76 |
return mask_image
|
| 77 |
|
| 78 |
|
| 79 |
+
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6):
|
| 80 |
tiles = []
|
| 81 |
|
| 82 |
with rasterio.open(map_file) as src:
|
|
|
|
| 113 |
"width": tile_size,
|
| 114 |
"transform": rasterio.windows.transform(window, src.transform)
|
| 115 |
})
|
|
|
|
| 116 |
|
| 117 |
+
tile_image = np.array(tile_image)
|
| 118 |
preprocessed_tile = preprocess(image=tile_image)['image']
|
| 119 |
batch_images.append(preprocessed_tile)
|
| 120 |
batch_metas.append(out_meta)
|
|
|
|
| 124 |
|
| 125 |
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
|
| 126 |
with torch.no_grad():
|
| 127 |
+
batch_masks = model(batch_tensor)
|
| 128 |
|
| 129 |
batch_masks = torch.sigmoid(batch_masks)
|
| 130 |
batch_masks = (batch_masks > threshold).float()
|
|
|
|
| 142 |
return tiles
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
def create_vector_mask(tiles, output_path):
|
| 146 |
all_polygons = []
|
| 147 |
for mask_array, meta in tiles:
|
| 148 |
+
|
| 149 |
mask_array = (mask_array > 0).astype(np.uint8)
|
| 150 |
|
|
|
|
| 151 |
mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))
|
| 152 |
|
| 153 |
+
# to shapely polygons
|
| 154 |
polygons = [shape(geom) for geom, value in mask_shapes if value == 1]
|
| 155 |
|
| 156 |
all_polygons.extend(polygons)
|
| 157 |
+
#union of all polygons
|
| 158 |
union_polygon = unary_union(all_polygons)
|
| 159 |
+
# create gdf
|
| 160 |
gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
|
| 161 |
# Save to file
|
| 162 |
gdf.to_file(output_path)
|
| 163 |
|
| 164 |
+
#area in square meters
|
| 165 |
area_m2 = gdf.to_crs(epsg=3857).area.sum()
|
|
|
|
| 166 |
|
| 167 |
return gdf, area_m2
|
| 168 |
|
| 169 |
|
| 170 |
+
def display_map(shapefile_path, tif_path):
|
| 171 |
+
st.title("Map with Shape and TIFF Overlay")
|
| 172 |
+
|
| 173 |
+
mask = gpd.read_file(shapefile_path)
|
| 174 |
+
|
| 175 |
+
if mask.crs is None or mask.crs.to_string() != 'EPSG:3857':
|
| 176 |
+
mask = mask.to_crs('EPSG:3857')
|
| 177 |
+
|
| 178 |
+
bounds = mask.total_bounds # [minx, miny, maxx, maxy]
|
| 179 |
+
center = [(bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2]
|
| 180 |
+
|
| 181 |
+
m = leafmap.Map(
|
| 182 |
+
center=[center[1], center[0]], # leafmap uses [latitude, longitude]
|
| 183 |
+
zoom=10,
|
| 184 |
+
crs='EPSG3857'
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
m.add_gdf(mask, layer_name="Shapefile Mask")
|
| 188 |
+
|
| 189 |
+
m.add_raster(tif_path, layer_name="Satellite Image", rgb=True, opacity=0.9)
|
| 190 |
+
|
| 191 |
+
m.to_streamlit()
|
| 192 |
+
|
| 193 |
+
|
| 194 |
def main():
|
| 195 |
+
st.title("PV Segmentor")
|
| 196 |
|
| 197 |
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
|
| 198 |
|
| 199 |
if uploaded_file is not None:
|
| 200 |
st.write("File uploaded successfully!")
|
| 201 |
|
| 202 |
+
threshold = st.slider(
|
| 203 |
+
'Select the value of the threshold',
|
| 204 |
+
min_value=0.1,
|
| 205 |
+
max_value=0.9,
|
| 206 |
+
value=0.6,
|
| 207 |
+
step=0.05
|
| 208 |
)
|
| 209 |
+
overlap = st.slider(
|
| 210 |
+
'Select the value of overlap',
|
| 211 |
+
min_value=50,
|
| 212 |
+
max_value=150,
|
| 213 |
+
value=100,
|
| 214 |
+
step=25
|
| 215 |
)
|
| 216 |
st.write('Selected threshold value:', threshold)
|
| 217 |
st.write('Selected overlap value:', overlap)
|
|
|
|
| 223 |
f.write(uploaded_file.getbuffer())
|
| 224 |
|
| 225 |
best_model.float()
|
| 226 |
+
tiles = extract_tiles("temp.tif", best_model, tile_size=512, overlap=overlap, batch_size=4, threshold=threshold)
|
| 227 |
|
| 228 |
st.write("Processing complete!")
|
| 229 |
|
|
|
|
| 231 |
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
|
| 232 |
|
| 233 |
st.write("Vector mask created successfully!")
|
| 234 |
+
st.write(f"Total area occupied by PV panels: {area_m2:.4f} m^2")
|
| 235 |
|
| 236 |
# Offer the shapefile for download
|
| 237 |
shp_files = [f for f in os.listdir() if
|
|
|
|
| 250 |
mime="application/zip"
|
| 251 |
)
|
| 252 |
|
| 253 |
+
display_map("output_mask.shp", "temp.tif")
|
| 254 |
+
|
| 255 |
+
#os.remove("temp.tif")
|
| 256 |
+
#for file in shp_files:
|
| 257 |
+
# os.remove(file)
|
| 258 |
|
| 259 |
|
| 260 |
if __name__ == "__main__":
|
| 261 |
+
main()
|