import streamlit as st import geopandas as gpd import leafmap.foliumap as leafmap from PIL import Image import rasterio from rasterio.windows import Window from stqdm import stqdm import io import zipfile import os import albumentations as albu import segmentation_models_pytorch as smp from albumentations.pytorch.transforms import ToTensorV2 from shapely.geometry import shape from shapely.ops import unary_union from rasterio.features import shapes import torch import numpy as np DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") ENCODER = 'se_resnext50_32x4d' ENCODER_WEIGHTS = 'imagenet' # Load and prepare the model @st.cache_resource def load_model(): model = torch.load('deeplabv3+ v15.pth', map_location=DEVICE) model.eval().float() return model best_model = load_model() def to_tensor(x, **kwargs): return x.astype('float32') # Preprocessing preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS) def get_preprocessing(): _transform = [ albu.Resize(512, 512), albu.Lambda(image=preprocessing_fn), albu.Lambda(image=to_tensor, mask=to_tensor), ToTensorV2(), ] return albu.Compose(_transform) preprocess = get_preprocessing() @torch.no_grad() def process_and_predict(image, model): if isinstance(image, Image.Image): image = np.array(image) if image.ndim == 2: image = np.stack([image] * 3, axis=-1) elif image.shape[2] == 4: image = image[:, :, :3] preprocessed = preprocess(image=image)['image'] input_tensor = preprocessed.unsqueeze(0).to(DEVICE) mask = model(input_tensor) mask = torch.sigmoid(mask) mask = (mask > 0.6).float() mask_image = Image.fromarray((mask.squeeze().cpu().numpy() * 255).astype(np.uint8)) return mask_image def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6): tiles = [] with rasterio.open(map_file) as src: height = src.height width = src.width effective_tile_size = tile_size - overlap for y in stqdm(range(0, height, effective_tile_size)): for x in range(0, width, effective_tile_size): batch_images = [] batch_metas = [] for i in range(batch_size): curr_y = y + (i * effective_tile_size) if curr_y >= height: break window = Window(x, curr_y, tile_size, tile_size) out_image = src.read(window=window) if out_image.shape[0] == 1: out_image = np.repeat(out_image, 3, axis=0) elif out_image.shape[0] != 3: raise ValueError("The number of channels in the image is not supported") out_image = np.transpose(out_image, (1, 2, 0)) tile_image = Image.fromarray(out_image.astype(np.uint8)) out_meta = src.meta.copy() out_meta.update({ "driver": "GTiff", "height": tile_size, "width": tile_size, "transform": rasterio.windows.transform(window, src.transform) }) tile_image = np.array(tile_image) preprocessed_tile = preprocess(image=tile_image)['image'] batch_images.append(preprocessed_tile) batch_metas.append(out_meta) if not batch_images: break batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0) with torch.no_grad(): batch_masks = model(batch_tensor) batch_masks = torch.sigmoid(batch_masks) batch_masks = (batch_masks > threshold).float() for j, mask_tensor in enumerate(batch_masks): mask_resized = torch.nn.functional.interpolate(mask_tensor.unsqueeze(0), size=(tile_size, tile_size), mode='bilinear', align_corners=False).squeeze(0) mask_array = mask_resized.squeeze().cpu().numpy() if mask_array.any() == 1: tiles.append([mask_array, batch_metas[j]]) return tiles def create_vector_mask(tiles, output_path): all_polygons = [] for mask_array, meta in tiles: mask_array = (mask_array > 0).astype(np.uint8) mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform'])) # to shapely polygons polygons = [shape(geom) for geom, value in mask_shapes if value == 1] all_polygons.extend(polygons) #union of all polygons union_polygon = unary_union(all_polygons) # create gdf gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs']) # Save to file gdf.to_file(output_path) #area in square meters area_m2 = gdf.to_crs(epsg=3857).area.sum() return gdf, area_m2 def display_map(shapefile_path, tif_path): st.title("Map with Shape and TIFF Overlay") mask = gpd.read_file(shapefile_path) if mask.crs is None or mask.crs.to_string() != 'EPSG:3857': mask = mask.to_crs('EPSG:3857') bounds = mask.total_bounds # [minx, miny, maxx, maxy] center = [(bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2] m = leafmap.Map( center=[center[1], center[0]], # leafmap uses [latitude, longitude] zoom=10, crs='EPSG3857' ) m.add_gdf(mask, layer_name="Shapefile Mask") m.add_raster(tif_path, layer_name="Satellite Image", rgb=True, opacity=0.9) m.to_streamlit() def main(): st.title("PV Segmentor") uploaded_file = st.file_uploader("Choose a TIF file", type="tif") if uploaded_file is not None: st.write("File uploaded successfully!") threshold = st.slider( 'Select the value of the threshold', min_value=0.1, max_value=0.9, value=0.6, step=0.05 ) overlap = st.slider( 'Select the value of overlap', min_value=50, max_value=150, value=100, step=25 ) st.write('Selected threshold value:', threshold) st.write('Selected overlap value:', overlap) if st.button("Process File"): st.write("Processing...") with open("temp.tif", "wb") as f: f.write(uploaded_file.getbuffer()) best_model.float() tiles = extract_tiles("temp.tif", best_model, tile_size=512, overlap=overlap, batch_size=4, threshold=threshold) st.write("Processing complete!") output_path = "output_mask.shp" result_gdf, area_m2 = create_vector_mask(tiles, output_path) st.write("Vector mask created successfully!") st.write(f"Total area occupied by PV panels: {area_m2:.4f} m^2") # Offer the shapefile for download shp_files = [f for f in os.listdir() if f.startswith("output_mask") and f.endswith((".shp", ".shx", ".dbf", ".prj"))] with io.BytesIO() as zip_buffer: with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED, False) as zip_file: for file in shp_files: zip_file.write(file) zip_buffer.seek(0) st.download_button( label="Download shapefile", data=zip_buffer, file_name="output_mask.zip", mime="application/zip" ) display_map("output_mask.shp", "temp.tif") #os.remove("temp.tif") #for file in shp_files: # os.remove(file) if __name__ == "__main__": main()