Spaces:
Sleeping
Sleeping
Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pdfplumber
|
| 2 |
+
import spacy
|
| 3 |
+
import re
|
| 4 |
+
|
| 5 |
+
# Load NLP Model
|
| 6 |
+
nlp = spacy.load("en_core_web_sm")
|
| 7 |
+
|
| 8 |
+
# Predefined ATS-friendly keywords
|
| 9 |
+
REQUIRED_SKILLS = {"Python", "Machine Learning", "NLP", "Deep Learning", "AI", "Data Science", "Cloud", "Hugging Face"}
|
| 10 |
+
|
| 11 |
+
def extract_text_from_pdf(pdf_path):
|
| 12 |
+
text = ""
|
| 13 |
+
with pdfplumber.open(pdf_path) as pdf:
|
| 14 |
+
for page in pdf.pages:
|
| 15 |
+
text += page.extract_text() + "\n"
|
| 16 |
+
return text.strip()
|
| 17 |
+
|
| 18 |
+
def analyze_resume(text):
|
| 19 |
+
doc = nlp(text)
|
| 20 |
+
|
| 21 |
+
# Extract skills and education
|
| 22 |
+
words = set([token.text for token in doc if token.is_alpha])
|
| 23 |
+
matched_skills = REQUIRED_SKILLS.intersection(words)
|
| 24 |
+
missing_skills = REQUIRED_SKILLS - matched_skills
|
| 25 |
+
|
| 26 |
+
# Basic ATS Check
|
| 27 |
+
ats_score = (len(matched_skills) / len(REQUIRED_SKILLS)) * 100
|
| 28 |
+
|
| 29 |
+
return {
|
| 30 |
+
"matched_skills": list(matched_skills),
|
| 31 |
+
"missing_skills": list(missing_skills),
|
| 32 |
+
"ats_score": round(ats_score, 2)
|
| 33 |
+
}
|