Spaces:
Build error
Build error
napatswift
commited on
Commit
·
f8610ca
1
Parent(s):
b650184
Add files
Browse files- Dockerfile +27 -0
- main.py +0 -0
- model/20230224_051330.log +755 -0
- model/config.py +259 -0
- model/epoch_20.pth +3 -0
- model/epoch_40.pth +3 -0
- requirements.txt +7 -0
Dockerfile
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
WORKDIR /code
|
| 4 |
+
|
| 5 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 6 |
+
|
| 7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 8 |
+
|
| 9 |
+
RUN mim install mmengine
|
| 10 |
+
RUN mim install 'mmcv>=2.0.0rc1'
|
| 11 |
+
RUN mim install 'mmdet>=3.0.0rc0'
|
| 12 |
+
|
| 13 |
+
# Set up a new user named "user" with user ID 1000
|
| 14 |
+
RUN useradd -m -u 1000 user
|
| 15 |
+
# Switch to the "user" user
|
| 16 |
+
USER user
|
| 17 |
+
# Set home to the user's home directory
|
| 18 |
+
ENV HOME=/home/user \
|
| 19 |
+
PATH=/home/user/.local/bin:$PATH
|
| 20 |
+
|
| 21 |
+
# Set the working directory to the user's home directory
|
| 22 |
+
WORKDIR $HOME/app
|
| 23 |
+
|
| 24 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 25 |
+
COPY --chown=user . $HOME/app
|
| 26 |
+
|
| 27 |
+
CMD ["python", "main.py"]
|
main.py
ADDED
|
File without changes
|
model/20230224_051330.log
ADDED
|
@@ -0,0 +1,755 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2023/02/24 05:13:32 - mmengine - INFO -
|
| 2 |
+
------------------------------------------------------------
|
| 3 |
+
System environment:
|
| 4 |
+
sys.platform: linux
|
| 5 |
+
Python: 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
|
| 6 |
+
CUDA available: True
|
| 7 |
+
numpy_random_seed: 1569491978
|
| 8 |
+
GPU 0: Tesla T4
|
| 9 |
+
CUDA_HOME: /usr/local/cuda
|
| 10 |
+
NVCC: Cuda compilation tools, release 11.6, V11.6.124
|
| 11 |
+
GCC: x86_64-linux-gnu-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
|
| 12 |
+
PyTorch: 1.13.1+cu116
|
| 13 |
+
PyTorch compiling details: PyTorch built with:
|
| 14 |
+
- GCC 9.3
|
| 15 |
+
- C++ Version: 201402
|
| 16 |
+
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
|
| 17 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
| 18 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 19 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 20 |
+
- NNPACK is enabled
|
| 21 |
+
- CPU capability usage: AVX2
|
| 22 |
+
- CUDA Runtime 11.6
|
| 23 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
|
| 24 |
+
- CuDNN 8.3.2 (built against CUDA 11.5)
|
| 25 |
+
- Magma 2.6.1
|
| 26 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
| 27 |
+
|
| 28 |
+
TorchVision: 0.14.1+cu116
|
| 29 |
+
OpenCV: 4.6.0
|
| 30 |
+
MMEngine: 0.5.0
|
| 31 |
+
|
| 32 |
+
Runtime environment:
|
| 33 |
+
cudnn_benchmark: True
|
| 34 |
+
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
|
| 35 |
+
dist_cfg: {'backend': 'nccl'}
|
| 36 |
+
seed: None
|
| 37 |
+
Distributed launcher: none
|
| 38 |
+
Distributed training: False
|
| 39 |
+
GPU number: 1
|
| 40 |
+
------------------------------------------------------------
|
| 41 |
+
|
| 42 |
+
2023/02/24 05:13:33 - mmengine - INFO - Config:
|
| 43 |
+
file_client_args = dict(backend='disk')
|
| 44 |
+
model = dict(
|
| 45 |
+
type='DBNet',
|
| 46 |
+
backbone=dict(
|
| 47 |
+
type='mmdet.ResNet',
|
| 48 |
+
depth=18,
|
| 49 |
+
num_stages=4,
|
| 50 |
+
out_indices=(0, 1, 2, 3),
|
| 51 |
+
frozen_stages=-1,
|
| 52 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
| 53 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
|
| 54 |
+
norm_eval=False,
|
| 55 |
+
style='caffe'),
|
| 56 |
+
neck=dict(
|
| 57 |
+
type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
|
| 58 |
+
det_head=dict(
|
| 59 |
+
type='DBHead',
|
| 60 |
+
in_channels=256,
|
| 61 |
+
module_loss=dict(type='DBModuleLoss'),
|
| 62 |
+
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
|
| 63 |
+
data_preprocessor=dict(
|
| 64 |
+
type='TextDetDataPreprocessor',
|
| 65 |
+
mean=[123.675, 116.28, 103.53],
|
| 66 |
+
std=[58.395, 57.12, 57.375],
|
| 67 |
+
bgr_to_rgb=True,
|
| 68 |
+
pad_size_divisor=32))
|
| 69 |
+
train_pipeline = [
|
| 70 |
+
dict(
|
| 71 |
+
type='LoadImageFromFile',
|
| 72 |
+
file_client_args=dict(backend='disk'),
|
| 73 |
+
color_type='color_ignore_orientation'),
|
| 74 |
+
dict(
|
| 75 |
+
type='LoadOCRAnnotations',
|
| 76 |
+
with_polygon=True,
|
| 77 |
+
with_bbox=True,
|
| 78 |
+
with_label=True),
|
| 79 |
+
dict(
|
| 80 |
+
type='TorchVisionWrapper',
|
| 81 |
+
op='ColorJitter',
|
| 82 |
+
brightness=0.12549019607843137,
|
| 83 |
+
saturation=0.5),
|
| 84 |
+
dict(
|
| 85 |
+
type='ImgAugWrapper',
|
| 86 |
+
args=[['Fliplr', 0.5], {
|
| 87 |
+
'cls': 'Affine',
|
| 88 |
+
'rotate': [-10, 10]
|
| 89 |
+
}, ['Resize', [0.5, 3.0]]]),
|
| 90 |
+
dict(type='RandomCrop', min_side_ratio=0.1),
|
| 91 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 92 |
+
dict(type='Pad', size=(640, 640)),
|
| 93 |
+
dict(
|
| 94 |
+
type='PackTextDetInputs',
|
| 95 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
| 96 |
+
]
|
| 97 |
+
test_pipeline = [
|
| 98 |
+
dict(
|
| 99 |
+
type='LoadImageFromFile',
|
| 100 |
+
file_client_args=dict(backend='disk'),
|
| 101 |
+
color_type='color_ignore_orientation'),
|
| 102 |
+
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
| 103 |
+
dict(
|
| 104 |
+
type='LoadOCRAnnotations',
|
| 105 |
+
with_polygon=True,
|
| 106 |
+
with_bbox=True,
|
| 107 |
+
with_label=True),
|
| 108 |
+
dict(
|
| 109 |
+
type='PackTextDetInputs',
|
| 110 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
| 111 |
+
]
|
| 112 |
+
icdar2015_textdet_data_root = 'data/det/textdet-thvote'
|
| 113 |
+
icdar2015_textdet_train = dict(
|
| 114 |
+
type='OCRDataset',
|
| 115 |
+
data_root='data/det/textdet-thvote',
|
| 116 |
+
ann_file='textdet_train.json',
|
| 117 |
+
data_prefix=dict(img_path='imgs/'),
|
| 118 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 119 |
+
pipeline=[
|
| 120 |
+
dict(
|
| 121 |
+
type='LoadImageFromFile',
|
| 122 |
+
file_client_args=dict(backend='disk'),
|
| 123 |
+
color_type='color_ignore_orientation'),
|
| 124 |
+
dict(
|
| 125 |
+
type='LoadOCRAnnotations',
|
| 126 |
+
with_polygon=True,
|
| 127 |
+
with_bbox=True,
|
| 128 |
+
with_label=True),
|
| 129 |
+
dict(
|
| 130 |
+
type='TorchVisionWrapper',
|
| 131 |
+
op='ColorJitter',
|
| 132 |
+
brightness=0.12549019607843137,
|
| 133 |
+
saturation=0.5),
|
| 134 |
+
dict(
|
| 135 |
+
type='ImgAugWrapper',
|
| 136 |
+
args=[['Fliplr', 0.5], {
|
| 137 |
+
'cls': 'Affine',
|
| 138 |
+
'rotate': [-10, 10]
|
| 139 |
+
}, ['Resize', [0.5, 3.0]]]),
|
| 140 |
+
dict(type='RandomCrop', min_side_ratio=0.1),
|
| 141 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 142 |
+
dict(type='Pad', size=(640, 640)),
|
| 143 |
+
dict(
|
| 144 |
+
type='PackTextDetInputs',
|
| 145 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
| 146 |
+
])
|
| 147 |
+
icdar2015_textdet_test = dict(
|
| 148 |
+
type='OCRDataset',
|
| 149 |
+
data_root='data/det/textdet-thvote',
|
| 150 |
+
ann_file='textdet_test.json',
|
| 151 |
+
data_prefix=dict(img_path='imgs/'),
|
| 152 |
+
test_mode=True,
|
| 153 |
+
pipeline=[
|
| 154 |
+
dict(
|
| 155 |
+
type='LoadImageFromFile',
|
| 156 |
+
file_client_args=dict(backend='disk'),
|
| 157 |
+
color_type='color_ignore_orientation'),
|
| 158 |
+
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
| 159 |
+
dict(
|
| 160 |
+
type='LoadOCRAnnotations',
|
| 161 |
+
with_polygon=True,
|
| 162 |
+
with_bbox=True,
|
| 163 |
+
with_label=True),
|
| 164 |
+
dict(
|
| 165 |
+
type='PackTextDetInputs',
|
| 166 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
| 167 |
+
])
|
| 168 |
+
default_scope = 'mmocr'
|
| 169 |
+
env_cfg = dict(
|
| 170 |
+
cudnn_benchmark=True,
|
| 171 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 172 |
+
dist_cfg=dict(backend='nccl'))
|
| 173 |
+
randomness = dict(seed=None)
|
| 174 |
+
default_hooks = dict(
|
| 175 |
+
timer=dict(type='IterTimerHook'),
|
| 176 |
+
logger=dict(type='LoggerHook', interval=5),
|
| 177 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 178 |
+
checkpoint=dict(type='CheckpointHook', interval=20),
|
| 179 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 180 |
+
sync_buffer=dict(type='SyncBuffersHook'),
|
| 181 |
+
visualization=dict(
|
| 182 |
+
type='VisualizationHook',
|
| 183 |
+
interval=1,
|
| 184 |
+
enable=False,
|
| 185 |
+
show=False,
|
| 186 |
+
draw_gt=False,
|
| 187 |
+
draw_pred=False))
|
| 188 |
+
log_level = 'INFO'
|
| 189 |
+
log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True)
|
| 190 |
+
load_from = None
|
| 191 |
+
resume = False
|
| 192 |
+
val_evaluator = dict(type='HmeanIOUMetric')
|
| 193 |
+
test_evaluator = dict(type='HmeanIOUMetric')
|
| 194 |
+
vis_backends = [dict(type='LocalVisBackend')]
|
| 195 |
+
visualizer = dict(
|
| 196 |
+
type='TextDetLocalVisualizer',
|
| 197 |
+
name='visualizer',
|
| 198 |
+
vis_backends=[dict(type='LocalVisBackend')])
|
| 199 |
+
optim_wrapper = dict(
|
| 200 |
+
type='OptimWrapper',
|
| 201 |
+
optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001))
|
| 202 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20)
|
| 203 |
+
val_cfg = dict(type='ValLoop')
|
| 204 |
+
test_cfg = dict(type='TestLoop')
|
| 205 |
+
param_scheduler = [dict(type='PolyLR', power=0.9, eta_min=1e-07, end=1200)]
|
| 206 |
+
train_dataloader = dict(
|
| 207 |
+
batch_size=16,
|
| 208 |
+
num_workers=8,
|
| 209 |
+
persistent_workers=True,
|
| 210 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 211 |
+
dataset=dict(
|
| 212 |
+
type='OCRDataset',
|
| 213 |
+
data_root='data/det/textdet-thvote',
|
| 214 |
+
ann_file='textdet_train.json',
|
| 215 |
+
data_prefix=dict(img_path='imgs/'),
|
| 216 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 217 |
+
pipeline=[
|
| 218 |
+
dict(
|
| 219 |
+
type='LoadImageFromFile',
|
| 220 |
+
file_client_args=dict(backend='disk'),
|
| 221 |
+
color_type='color_ignore_orientation'),
|
| 222 |
+
dict(
|
| 223 |
+
type='LoadOCRAnnotations',
|
| 224 |
+
with_polygon=True,
|
| 225 |
+
with_bbox=True,
|
| 226 |
+
with_label=True),
|
| 227 |
+
dict(
|
| 228 |
+
type='TorchVisionWrapper',
|
| 229 |
+
op='ColorJitter',
|
| 230 |
+
brightness=0.12549019607843137,
|
| 231 |
+
saturation=0.5),
|
| 232 |
+
dict(
|
| 233 |
+
type='ImgAugWrapper',
|
| 234 |
+
args=[['Fliplr', 0.5], {
|
| 235 |
+
'cls': 'Affine',
|
| 236 |
+
'rotate': [-10, 10]
|
| 237 |
+
}, ['Resize', [0.5, 3.0]]]),
|
| 238 |
+
dict(type='RandomCrop', min_side_ratio=0.1),
|
| 239 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 240 |
+
dict(type='Pad', size=(640, 640)),
|
| 241 |
+
dict(
|
| 242 |
+
type='PackTextDetInputs',
|
| 243 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
| 244 |
+
]))
|
| 245 |
+
val_dataloader = dict(
|
| 246 |
+
batch_size=1,
|
| 247 |
+
num_workers=4,
|
| 248 |
+
persistent_workers=True,
|
| 249 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 250 |
+
dataset=dict(
|
| 251 |
+
type='OCRDataset',
|
| 252 |
+
data_root='data/det/textdet-thvote',
|
| 253 |
+
ann_file='textdet_test.json',
|
| 254 |
+
data_prefix=dict(img_path='imgs/'),
|
| 255 |
+
test_mode=True,
|
| 256 |
+
pipeline=[
|
| 257 |
+
dict(
|
| 258 |
+
type='LoadImageFromFile',
|
| 259 |
+
file_client_args=dict(backend='disk'),
|
| 260 |
+
color_type='color_ignore_orientation'),
|
| 261 |
+
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
| 262 |
+
dict(
|
| 263 |
+
type='LoadOCRAnnotations',
|
| 264 |
+
with_polygon=True,
|
| 265 |
+
with_bbox=True,
|
| 266 |
+
with_label=True),
|
| 267 |
+
dict(
|
| 268 |
+
type='PackTextDetInputs',
|
| 269 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape',
|
| 270 |
+
'scale_factor'))
|
| 271 |
+
]))
|
| 272 |
+
test_dataloader = dict(
|
| 273 |
+
batch_size=1,
|
| 274 |
+
num_workers=4,
|
| 275 |
+
persistent_workers=True,
|
| 276 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 277 |
+
dataset=dict(
|
| 278 |
+
type='OCRDataset',
|
| 279 |
+
data_root='data/det/textdet-thvote',
|
| 280 |
+
ann_file='textdet_test.json',
|
| 281 |
+
data_prefix=dict(img_path='imgs/'),
|
| 282 |
+
test_mode=True,
|
| 283 |
+
pipeline=[
|
| 284 |
+
dict(
|
| 285 |
+
type='LoadImageFromFile',
|
| 286 |
+
file_client_args=dict(backend='disk'),
|
| 287 |
+
color_type='color_ignore_orientation'),
|
| 288 |
+
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
| 289 |
+
dict(
|
| 290 |
+
type='LoadOCRAnnotations',
|
| 291 |
+
with_polygon=True,
|
| 292 |
+
with_bbox=True,
|
| 293 |
+
with_label=True),
|
| 294 |
+
dict(
|
| 295 |
+
type='PackTextDetInputs',
|
| 296 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape',
|
| 297 |
+
'scale_factor'))
|
| 298 |
+
]))
|
| 299 |
+
auto_scale_lr = dict(base_batch_size=16)
|
| 300 |
+
launcher = 'none'
|
| 301 |
+
work_dir = './work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015'
|
| 302 |
+
|
| 303 |
+
2023/02/24 05:13:33 - mmengine - WARNING - The "visualizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 304 |
+
2023/02/24 05:13:33 - mmengine - WARNING - The "vis_backend" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 305 |
+
2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 306 |
+
2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmdet did not set import location. Fallback to call `mmdet.utils.register_all_modules` instead.
|
| 307 |
+
2023/02/24 05:13:38 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
|
| 308 |
+
2023/02/24 05:13:38 - mmengine - WARNING - The "hook" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 309 |
+
2023/02/24 05:13:38 - mmengine - INFO - Hooks will be executed in the following order:
|
| 310 |
+
before_run:
|
| 311 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 312 |
+
(BELOW_NORMAL) LoggerHook
|
| 313 |
+
--------------------
|
| 314 |
+
before_train:
|
| 315 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 316 |
+
(NORMAL ) IterTimerHook
|
| 317 |
+
(VERY_LOW ) CheckpointHook
|
| 318 |
+
--------------------
|
| 319 |
+
before_train_epoch:
|
| 320 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 321 |
+
(NORMAL ) IterTimerHook
|
| 322 |
+
(NORMAL ) DistSamplerSeedHook
|
| 323 |
+
--------------------
|
| 324 |
+
before_train_iter:
|
| 325 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 326 |
+
(NORMAL ) IterTimerHook
|
| 327 |
+
--------------------
|
| 328 |
+
after_train_iter:
|
| 329 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 330 |
+
(NORMAL ) IterTimerHook
|
| 331 |
+
(BELOW_NORMAL) LoggerHook
|
| 332 |
+
(LOW ) ParamSchedulerHook
|
| 333 |
+
(VERY_LOW ) CheckpointHook
|
| 334 |
+
--------------------
|
| 335 |
+
after_train_epoch:
|
| 336 |
+
(NORMAL ) IterTimerHook
|
| 337 |
+
(NORMAL ) SyncBuffersHook
|
| 338 |
+
(LOW ) ParamSchedulerHook
|
| 339 |
+
(VERY_LOW ) CheckpointHook
|
| 340 |
+
--------------------
|
| 341 |
+
before_val_epoch:
|
| 342 |
+
(NORMAL ) IterTimerHook
|
| 343 |
+
--------------------
|
| 344 |
+
before_val_iter:
|
| 345 |
+
(NORMAL ) IterTimerHook
|
| 346 |
+
--------------------
|
| 347 |
+
after_val_iter:
|
| 348 |
+
(NORMAL ) IterTimerHook
|
| 349 |
+
(NORMAL ) VisualizationHook
|
| 350 |
+
(BELOW_NORMAL) LoggerHook
|
| 351 |
+
--------------------
|
| 352 |
+
after_val_epoch:
|
| 353 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 354 |
+
(NORMAL ) IterTimerHook
|
| 355 |
+
(BELOW_NORMAL) LoggerHook
|
| 356 |
+
(LOW ) ParamSchedulerHook
|
| 357 |
+
(VERY_LOW ) CheckpointHook
|
| 358 |
+
--------------------
|
| 359 |
+
before_test_epoch:
|
| 360 |
+
(NORMAL ) IterTimerHook
|
| 361 |
+
--------------------
|
| 362 |
+
before_test_iter:
|
| 363 |
+
(NORMAL ) IterTimerHook
|
| 364 |
+
--------------------
|
| 365 |
+
after_test_iter:
|
| 366 |
+
(NORMAL ) IterTimerHook
|
| 367 |
+
(NORMAL ) VisualizationHook
|
| 368 |
+
(BELOW_NORMAL) LoggerHook
|
| 369 |
+
--------------------
|
| 370 |
+
after_test_epoch:
|
| 371 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 372 |
+
(NORMAL ) IterTimerHook
|
| 373 |
+
(BELOW_NORMAL) LoggerHook
|
| 374 |
+
--------------------
|
| 375 |
+
after_run:
|
| 376 |
+
(BELOW_NORMAL) LoggerHook
|
| 377 |
+
--------------------
|
| 378 |
+
2023/02/24 05:13:39 - mmengine - WARNING - The "loop" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 379 |
+
2023/02/24 05:13:39 - mmengine - WARNING - The "dataset" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 380 |
+
2023/02/24 05:13:39 - mmengine - WARNING - The "transform" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 381 |
+
2023/02/24 05:13:39 - mmengine - WARNING - The "data sampler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 382 |
+
2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer constructor" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 383 |
+
2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 384 |
+
2023/02/24 05:13:39 - mmengine - WARNING - The "optim wrapper" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 385 |
+
2023/02/24 05:13:39 - mmengine - WARNING - The "parameter scheduler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 386 |
+
2023/02/24 05:13:40 - mmengine - WARNING - The "metric" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 387 |
+
2023/02/24 05:13:40 - mmengine - WARNING - The "weight initializer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
|
| 388 |
+
2023/02/24 05:13:40 - mmengine - INFO - load model from: torchvision://resnet18
|
| 389 |
+
2023/02/24 05:13:40 - mmengine - INFO - Loads checkpoint by torchvision backend from path: torchvision://resnet18
|
| 390 |
+
2023/02/24 05:13:40 - mmengine - WARNING - The model and loaded state dict do not match exactly
|
| 391 |
+
|
| 392 |
+
unexpected key in source state_dict: fc.weight, fc.bias
|
| 393 |
+
|
| 394 |
+
Name of parameter - Initialization information
|
| 395 |
+
|
| 396 |
+
backbone.conv1.weight - torch.Size([64, 3, 7, 7]):
|
| 397 |
+
PretrainedInit: load from torchvision://resnet18
|
| 398 |
+
|
| 399 |
+
backbone.bn1.weight - torch.Size([64]):
|
| 400 |
+
PretrainedInit: load from torchvision://resnet18
|
| 401 |
+
|
| 402 |
+
backbone.bn1.bias - torch.Size([64]):
|
| 403 |
+
PretrainedInit: load from torchvision://resnet18
|
| 404 |
+
|
| 405 |
+
backbone.layer1.0.conv1.weight - torch.Size([64, 64, 3, 3]):
|
| 406 |
+
PretrainedInit: load from torchvision://resnet18
|
| 407 |
+
|
| 408 |
+
backbone.layer1.0.bn1.weight - torch.Size([64]):
|
| 409 |
+
PretrainedInit: load from torchvision://resnet18
|
| 410 |
+
|
| 411 |
+
backbone.layer1.0.bn1.bias - torch.Size([64]):
|
| 412 |
+
PretrainedInit: load from torchvision://resnet18
|
| 413 |
+
|
| 414 |
+
backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]):
|
| 415 |
+
PretrainedInit: load from torchvision://resnet18
|
| 416 |
+
|
| 417 |
+
backbone.layer1.0.bn2.weight - torch.Size([64]):
|
| 418 |
+
PretrainedInit: load from torchvision://resnet18
|
| 419 |
+
|
| 420 |
+
backbone.layer1.0.bn2.bias - torch.Size([64]):
|
| 421 |
+
PretrainedInit: load from torchvision://resnet18
|
| 422 |
+
|
| 423 |
+
backbone.layer1.1.conv1.weight - torch.Size([64, 64, 3, 3]):
|
| 424 |
+
PretrainedInit: load from torchvision://resnet18
|
| 425 |
+
|
| 426 |
+
backbone.layer1.1.bn1.weight - torch.Size([64]):
|
| 427 |
+
PretrainedInit: load from torchvision://resnet18
|
| 428 |
+
|
| 429 |
+
backbone.layer1.1.bn1.bias - torch.Size([64]):
|
| 430 |
+
PretrainedInit: load from torchvision://resnet18
|
| 431 |
+
|
| 432 |
+
backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]):
|
| 433 |
+
PretrainedInit: load from torchvision://resnet18
|
| 434 |
+
|
| 435 |
+
backbone.layer1.1.bn2.weight - torch.Size([64]):
|
| 436 |
+
PretrainedInit: load from torchvision://resnet18
|
| 437 |
+
|
| 438 |
+
backbone.layer1.1.bn2.bias - torch.Size([64]):
|
| 439 |
+
PretrainedInit: load from torchvision://resnet18
|
| 440 |
+
|
| 441 |
+
backbone.layer2.0.conv1.weight - torch.Size([128, 64, 3, 3]):
|
| 442 |
+
PretrainedInit: load from torchvision://resnet18
|
| 443 |
+
|
| 444 |
+
backbone.layer2.0.bn1.weight - torch.Size([128]):
|
| 445 |
+
PretrainedInit: load from torchvision://resnet18
|
| 446 |
+
|
| 447 |
+
backbone.layer2.0.bn1.bias - torch.Size([128]):
|
| 448 |
+
PretrainedInit: load from torchvision://resnet18
|
| 449 |
+
|
| 450 |
+
backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]):
|
| 451 |
+
PretrainedInit: load from torchvision://resnet18
|
| 452 |
+
|
| 453 |
+
backbone.layer2.0.bn2.weight - torch.Size([128]):
|
| 454 |
+
PretrainedInit: load from torchvision://resnet18
|
| 455 |
+
|
| 456 |
+
backbone.layer2.0.bn2.bias - torch.Size([128]):
|
| 457 |
+
PretrainedInit: load from torchvision://resnet18
|
| 458 |
+
|
| 459 |
+
backbone.layer2.0.downsample.0.weight - torch.Size([128, 64, 1, 1]):
|
| 460 |
+
PretrainedInit: load from torchvision://resnet18
|
| 461 |
+
|
| 462 |
+
backbone.layer2.0.downsample.1.weight - torch.Size([128]):
|
| 463 |
+
PretrainedInit: load from torchvision://resnet18
|
| 464 |
+
|
| 465 |
+
backbone.layer2.0.downsample.1.bias - torch.Size([128]):
|
| 466 |
+
PretrainedInit: load from torchvision://resnet18
|
| 467 |
+
|
| 468 |
+
backbone.layer2.1.conv1.weight - torch.Size([128, 128, 3, 3]):
|
| 469 |
+
PretrainedInit: load from torchvision://resnet18
|
| 470 |
+
|
| 471 |
+
backbone.layer2.1.bn1.weight - torch.Size([128]):
|
| 472 |
+
PretrainedInit: load from torchvision://resnet18
|
| 473 |
+
|
| 474 |
+
backbone.layer2.1.bn1.bias - torch.Size([128]):
|
| 475 |
+
PretrainedInit: load from torchvision://resnet18
|
| 476 |
+
|
| 477 |
+
backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]):
|
| 478 |
+
PretrainedInit: load from torchvision://resnet18
|
| 479 |
+
|
| 480 |
+
backbone.layer2.1.bn2.weight - torch.Size([128]):
|
| 481 |
+
PretrainedInit: load from torchvision://resnet18
|
| 482 |
+
|
| 483 |
+
backbone.layer2.1.bn2.bias - torch.Size([128]):
|
| 484 |
+
PretrainedInit: load from torchvision://resnet18
|
| 485 |
+
|
| 486 |
+
backbone.layer3.0.conv1.weight - torch.Size([256, 128, 3, 3]):
|
| 487 |
+
PretrainedInit: load from torchvision://resnet18
|
| 488 |
+
|
| 489 |
+
backbone.layer3.0.bn1.weight - torch.Size([256]):
|
| 490 |
+
PretrainedInit: load from torchvision://resnet18
|
| 491 |
+
|
| 492 |
+
backbone.layer3.0.bn1.bias - torch.Size([256]):
|
| 493 |
+
PretrainedInit: load from torchvision://resnet18
|
| 494 |
+
|
| 495 |
+
backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]):
|
| 496 |
+
PretrainedInit: load from torchvision://resnet18
|
| 497 |
+
|
| 498 |
+
backbone.layer3.0.bn2.weight - torch.Size([256]):
|
| 499 |
+
PretrainedInit: load from torchvision://resnet18
|
| 500 |
+
|
| 501 |
+
backbone.layer3.0.bn2.bias - torch.Size([256]):
|
| 502 |
+
PretrainedInit: load from torchvision://resnet18
|
| 503 |
+
|
| 504 |
+
backbone.layer3.0.downsample.0.weight - torch.Size([256, 128, 1, 1]):
|
| 505 |
+
PretrainedInit: load from torchvision://resnet18
|
| 506 |
+
|
| 507 |
+
backbone.layer3.0.downsample.1.weight - torch.Size([256]):
|
| 508 |
+
PretrainedInit: load from torchvision://resnet18
|
| 509 |
+
|
| 510 |
+
backbone.layer3.0.downsample.1.bias - torch.Size([256]):
|
| 511 |
+
PretrainedInit: load from torchvision://resnet18
|
| 512 |
+
|
| 513 |
+
backbone.layer3.1.conv1.weight - torch.Size([256, 256, 3, 3]):
|
| 514 |
+
PretrainedInit: load from torchvision://resnet18
|
| 515 |
+
|
| 516 |
+
backbone.layer3.1.bn1.weight - torch.Size([256]):
|
| 517 |
+
PretrainedInit: load from torchvision://resnet18
|
| 518 |
+
|
| 519 |
+
backbone.layer3.1.bn1.bias - torch.Size([256]):
|
| 520 |
+
PretrainedInit: load from torchvision://resnet18
|
| 521 |
+
|
| 522 |
+
backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]):
|
| 523 |
+
PretrainedInit: load from torchvision://resnet18
|
| 524 |
+
|
| 525 |
+
backbone.layer3.1.bn2.weight - torch.Size([256]):
|
| 526 |
+
PretrainedInit: load from torchvision://resnet18
|
| 527 |
+
|
| 528 |
+
backbone.layer3.1.bn2.bias - torch.Size([256]):
|
| 529 |
+
PretrainedInit: load from torchvision://resnet18
|
| 530 |
+
|
| 531 |
+
backbone.layer4.0.conv1.weight - torch.Size([512, 256, 3, 3]):
|
| 532 |
+
PretrainedInit: load from torchvision://resnet18
|
| 533 |
+
|
| 534 |
+
backbone.layer4.0.bn1.weight - torch.Size([512]):
|
| 535 |
+
PretrainedInit: load from torchvision://resnet18
|
| 536 |
+
|
| 537 |
+
backbone.layer4.0.bn1.bias - torch.Size([512]):
|
| 538 |
+
PretrainedInit: load from torchvision://resnet18
|
| 539 |
+
|
| 540 |
+
backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]):
|
| 541 |
+
PretrainedInit: load from torchvision://resnet18
|
| 542 |
+
|
| 543 |
+
backbone.layer4.0.bn2.weight - torch.Size([512]):
|
| 544 |
+
PretrainedInit: load from torchvision://resnet18
|
| 545 |
+
|
| 546 |
+
backbone.layer4.0.bn2.bias - torch.Size([512]):
|
| 547 |
+
PretrainedInit: load from torchvision://resnet18
|
| 548 |
+
|
| 549 |
+
backbone.layer4.0.downsample.0.weight - torch.Size([512, 256, 1, 1]):
|
| 550 |
+
PretrainedInit: load from torchvision://resnet18
|
| 551 |
+
|
| 552 |
+
backbone.layer4.0.downsample.1.weight - torch.Size([512]):
|
| 553 |
+
PretrainedInit: load from torchvision://resnet18
|
| 554 |
+
|
| 555 |
+
backbone.layer4.0.downsample.1.bias - torch.Size([512]):
|
| 556 |
+
PretrainedInit: load from torchvision://resnet18
|
| 557 |
+
|
| 558 |
+
backbone.layer4.1.conv1.weight - torch.Size([512, 512, 3, 3]):
|
| 559 |
+
PretrainedInit: load from torchvision://resnet18
|
| 560 |
+
|
| 561 |
+
backbone.layer4.1.bn1.weight - torch.Size([512]):
|
| 562 |
+
PretrainedInit: load from torchvision://resnet18
|
| 563 |
+
|
| 564 |
+
backbone.layer4.1.bn1.bias - torch.Size([512]):
|
| 565 |
+
PretrainedInit: load from torchvision://resnet18
|
| 566 |
+
|
| 567 |
+
backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]):
|
| 568 |
+
PretrainedInit: load from torchvision://resnet18
|
| 569 |
+
|
| 570 |
+
backbone.layer4.1.bn2.weight - torch.Size([512]):
|
| 571 |
+
PretrainedInit: load from torchvision://resnet18
|
| 572 |
+
|
| 573 |
+
backbone.layer4.1.bn2.bias - torch.Size([512]):
|
| 574 |
+
PretrainedInit: load from torchvision://resnet18
|
| 575 |
+
|
| 576 |
+
neck.lateral_convs.0.conv.weight - torch.Size([256, 64, 1, 1]):
|
| 577 |
+
Initialized by user-defined `init_weights` in ConvModule
|
| 578 |
+
|
| 579 |
+
neck.lateral_convs.1.conv.weight - torch.Size([256, 128, 1, 1]):
|
| 580 |
+
Initialized by user-defined `init_weights` in ConvModule
|
| 581 |
+
|
| 582 |
+
neck.lateral_convs.2.conv.weight - torch.Size([256, 256, 1, 1]):
|
| 583 |
+
Initialized by user-defined `init_weights` in ConvModule
|
| 584 |
+
|
| 585 |
+
neck.lateral_convs.3.conv.weight - torch.Size([256, 512, 1, 1]):
|
| 586 |
+
Initialized by user-defined `init_weights` in ConvModule
|
| 587 |
+
|
| 588 |
+
neck.smooth_convs.0.conv.weight - torch.Size([64, 256, 3, 3]):
|
| 589 |
+
Initialized by user-defined `init_weights` in ConvModule
|
| 590 |
+
|
| 591 |
+
neck.smooth_convs.1.conv.weight - torch.Size([64, 256, 3, 3]):
|
| 592 |
+
Initialized by user-defined `init_weights` in ConvModule
|
| 593 |
+
|
| 594 |
+
neck.smooth_convs.2.conv.weight - torch.Size([64, 256, 3, 3]):
|
| 595 |
+
Initialized by user-defined `init_weights` in ConvModule
|
| 596 |
+
|
| 597 |
+
neck.smooth_convs.3.conv.weight - torch.Size([64, 256, 3, 3]):
|
| 598 |
+
Initialized by user-defined `init_weights` in ConvModule
|
| 599 |
+
|
| 600 |
+
det_head.binarize.0.weight - torch.Size([64, 256, 3, 3]):
|
| 601 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 602 |
+
|
| 603 |
+
det_head.binarize.1.weight - torch.Size([64]):
|
| 604 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 605 |
+
|
| 606 |
+
det_head.binarize.1.bias - torch.Size([64]):
|
| 607 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 608 |
+
|
| 609 |
+
det_head.binarize.3.weight - torch.Size([64, 64, 2, 2]):
|
| 610 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 611 |
+
|
| 612 |
+
det_head.binarize.3.bias - torch.Size([64]):
|
| 613 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 614 |
+
|
| 615 |
+
det_head.binarize.4.weight - torch.Size([64]):
|
| 616 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 617 |
+
|
| 618 |
+
det_head.binarize.4.bias - torch.Size([64]):
|
| 619 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 620 |
+
|
| 621 |
+
det_head.binarize.6.weight - torch.Size([64, 1, 2, 2]):
|
| 622 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 623 |
+
|
| 624 |
+
det_head.binarize.6.bias - torch.Size([1]):
|
| 625 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 626 |
+
|
| 627 |
+
det_head.threshold.0.weight - torch.Size([64, 256, 3, 3]):
|
| 628 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 629 |
+
|
| 630 |
+
det_head.threshold.1.weight - torch.Size([64]):
|
| 631 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 632 |
+
|
| 633 |
+
det_head.threshold.1.bias - torch.Size([64]):
|
| 634 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 635 |
+
|
| 636 |
+
det_head.threshold.3.weight - torch.Size([64, 64, 2, 2]):
|
| 637 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 638 |
+
|
| 639 |
+
det_head.threshold.3.bias - torch.Size([64]):
|
| 640 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 641 |
+
|
| 642 |
+
det_head.threshold.4.weight - torch.Size([64]):
|
| 643 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 644 |
+
|
| 645 |
+
det_head.threshold.4.bias - torch.Size([64]):
|
| 646 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 647 |
+
|
| 648 |
+
det_head.threshold.6.weight - torch.Size([64, 1, 2, 2]):
|
| 649 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 650 |
+
|
| 651 |
+
det_head.threshold.6.bias - torch.Size([1]):
|
| 652 |
+
The value is the same before and after calling `init_weights` of DBNet
|
| 653 |
+
2023/02/24 05:13:40 - mmengine - INFO - Checkpoints will be saved to /content/mmocr/work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015.
|
| 654 |
+
2023/02/24 05:16:48 - mmengine - INFO - Epoch(train) [1][ 5/22] lr: 7.0000e-03 eta: 11 days, 10:56:37 time: 37.4994 data_time: 13.3666 memory: 12058 loss: 10.5798 loss_prob: 7.3334 loss_thr: 2.3504 loss_db: 0.8960
|
| 655 |
+
2023/02/24 05:17:25 - mmengine - INFO - Epoch(train) [1][10/22] lr: 7.0000e-03 eta: 6 days, 20:37:40 time: 22.4578 data_time: 6.7581 memory: 6713 loss: 8.0422 loss_prob: 5.2998 loss_thr: 1.8354 loss_db: 0.9071
|
| 656 |
+
2023/02/24 05:17:49 - mmengine - INFO - Epoch(train) [1][15/22] lr: 7.0000e-03 eta: 5 days, 1:36:06 time: 6.1375 data_time: 0.0814 memory: 6713 loss: 5.2709 loss_prob: 3.0675 loss_thr: 1.2472 loss_db: 0.9562
|
| 657 |
+
2023/02/24 05:18:13 - mmengine - INFO - Epoch(train) [1][20/22] lr: 7.0000e-03 eta: 4 days, 3:52:43 time: 4.8026 data_time: 0.0312 memory: 6713 loss: 4.9844 loss_prob: 2.8490 loss_thr: 1.1389 loss_db: 0.9965
|
| 658 |
+
2023/02/24 05:18:25 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 659 |
+
2023/02/24 05:21:34 - mmengine - INFO - Epoch(train) [2][ 5/22] lr: 6.9947e-03 eta: 5 days, 8:31:25 time: 21.5618 data_time: 7.1003 memory: 11447 loss: 4.8425 loss_prob: 2.8106 loss_thr: 1.0607 loss_db: 0.9712
|
| 660 |
+
2023/02/24 05:22:09 - mmengine - INFO - Epoch(train) [2][10/22] lr: 6.9947e-03 eta: 4 days, 20:24:29 time: 22.4338 data_time: 7.1646 memory: 6712 loss: 4.7001 loss_prob: 2.7874 loss_thr: 1.1015 loss_db: 0.8112
|
| 661 |
+
2023/02/24 05:22:33 - mmengine - INFO - Epoch(train) [2][15/22] lr: 6.9947e-03 eta: 4 days, 9:30:51 time: 5.9429 data_time: 0.0877 memory: 6712 loss: 4.4307 loss_prob: 2.7478 loss_thr: 1.1405 loss_db: 0.5424
|
| 662 |
+
2023/02/24 05:22:56 - mmengine - INFO - Epoch(train) [2][20/22] lr: 6.9947e-03 eta: 4 days, 0:51:26 time: 4.7033 data_time: 0.0489 memory: 6712 loss: 4.1205 loss_prob: 2.6747 loss_thr: 1.0579 loss_db: 0.3879
|
| 663 |
+
2023/02/24 05:23:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 664 |
+
2023/02/24 05:25:58 - mmengine - INFO - Epoch(train) [3][ 5/22] lr: 6.9895e-03 eta: 4 days, 14:13:27 time: 19.7292 data_time: 6.3200 memory: 6712 loss: 3.7028 loss_prob: 2.4246 loss_thr: 0.9721 loss_db: 0.3061
|
| 665 |
+
2023/02/24 05:26:33 - mmengine - INFO - Epoch(train) [3][10/22] lr: 6.9895e-03 eta: 4 days, 8:44:41 time: 20.8299 data_time: 6.3501 memory: 6712 loss: 3.4052 loss_prob: 2.1909 loss_thr: 0.9435 loss_db: 0.2709
|
| 666 |
+
2023/02/24 05:26:53 - mmengine - INFO - Epoch(train) [3][15/22] lr: 6.9895e-03 eta: 4 days, 2:14:03 time: 5.4242 data_time: 0.0758 memory: 6712 loss: 3.1914 loss_prob: 2.0126 loss_thr: 0.9125 loss_db: 0.2664
|
| 667 |
+
2023/02/24 05:27:15 - mmengine - INFO - Epoch(train) [3][20/22] lr: 6.9895e-03 eta: 3 days, 21:04:03 time: 4.1317 data_time: 0.0486 memory: 6712 loss: 2.9899 loss_prob: 1.8336 loss_thr: 0.8950 loss_db: 0.2613
|
| 668 |
+
2023/02/24 05:27:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 669 |
+
2023/02/24 05:30:21 - mmengine - INFO - Epoch(train) [4][ 5/22] lr: 6.9842e-03 eta: 4 days, 7:06:23 time: 19.9728 data_time: 6.5625 memory: 6712 loss: 2.7135 loss_prob: 1.6040 loss_thr: 0.8757 loss_db: 0.2338
|
| 670 |
+
2023/02/24 05:30:55 - mmengine - INFO - Epoch(train) [4][10/22] lr: 6.9842e-03 eta: 4 days, 3:31:24 time: 21.1335 data_time: 6.5916 memory: 6712 loss: 2.5669 loss_prob: 1.4807 loss_thr: 0.8647 loss_db: 0.2215
|
| 671 |
+
2023/02/24 05:31:16 - mmengine - INFO - Epoch(train) [4][15/22] lr: 6.9842e-03 eta: 3 days, 23:16:49 time: 5.4703 data_time: 0.0655 memory: 6712 loss: 2.5318 loss_prob: 1.4490 loss_thr: 0.8641 loss_db: 0.2187
|
| 672 |
+
2023/02/24 05:31:37 - mmengine - INFO - Epoch(train) [4][20/22] lr: 6.9842e-03 eta: 3 days, 19:28:30 time: 4.1855 data_time: 0.0463 memory: 6712 loss: 2.4536 loss_prob: 1.3779 loss_thr: 0.8595 loss_db: 0.2161
|
| 673 |
+
2023/02/24 05:31:43 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 674 |
+
2023/02/24 05:34:41 - mmengine - INFO - Epoch(train) [5][ 5/22] lr: 6.9790e-03 eta: 4 days, 3:03:02 time: 19.6819 data_time: 6.5648 memory: 6712 loss: 2.2837 loss_prob: 1.2531 loss_thr: 0.8280 loss_db: 0.2027
|
| 675 |
+
2023/02/24 05:35:13 - mmengine - INFO - Epoch(train) [5][10/22] lr: 6.9790e-03 eta: 4 days, 0:23:14 time: 20.9855 data_time: 6.6279 memory: 6712 loss: 2.2122 loss_prob: 1.1990 loss_thr: 0.8168 loss_db: 0.1964
|
| 676 |
+
2023/02/24 05:35:36 - mmengine - INFO - Epoch(train) [5][15/22] lr: 6.9790e-03 eta: 3 days, 21:16:29 time: 5.4636 data_time: 0.0946 memory: 6712 loss: 2.1482 loss_prob: 1.1455 loss_thr: 0.8120 loss_db: 0.1906
|
| 677 |
+
2023/02/24 05:35:57 - mmengine - INFO - Epoch(train) [5][20/22] lr: 6.9790e-03 eta: 3 days, 18:24:00 time: 4.3929 data_time: 0.0363 memory: 6712 loss: 2.2215 loss_prob: 1.2052 loss_thr: 0.8195 loss_db: 0.1968
|
| 678 |
+
2023/02/24 05:36:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 679 |
+
2023/02/24 05:39:01 - mmengine - INFO - Epoch(train) [6][ 5/22] lr: 6.9737e-03 eta: 4 days, 0:33:26 time: 19.8343 data_time: 6.6865 memory: 6712 loss: 2.2092 loss_prob: 1.1873 loss_thr: 0.8270 loss_db: 0.1949
|
| 680 |
+
2023/02/24 05:39:35 - mmengine - INFO - Epoch(train) [6][10/22] lr: 6.9737e-03 eta: 3 days, 22:34:41 time: 21.0220 data_time: 6.7316 memory: 6712 loss: 2.0882 loss_prob: 1.0934 loss_thr: 0.8093 loss_db: 0.1856
|
| 681 |
+
2023/02/24 05:39:55 - mmengine - INFO - Epoch(train) [6][15/22] lr: 6.9737e-03 eta: 3 days, 19:56:56 time: 5.3949 data_time: 0.0639 memory: 6712 loss: 2.0953 loss_prob: 1.1014 loss_thr: 0.8072 loss_db: 0.1867
|
| 682 |
+
2023/02/24 05:40:15 - mmengine - INFO - Epoch(train) [6][20/22] lr: 6.9737e-03 eta: 3 days, 17:30:13 time: 3.9802 data_time: 0.0307 memory: 6712 loss: 2.1803 loss_prob: 1.1807 loss_thr: 0.8064 loss_db: 0.1932
|
| 683 |
+
2023/02/24 05:40:24 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 684 |
+
2023/02/24 05:43:18 - mmengine - INFO - Epoch(train) [7][ 5/22] lr: 6.9685e-03 eta: 3 days, 22:38:09 time: 19.3378 data_time: 6.0656 memory: 6712 loss: 2.1125 loss_prob: 1.1454 loss_thr: 0.7801 loss_db: 0.1870
|
| 685 |
+
2023/02/24 05:43:52 - mmengine - INFO - Epoch(train) [7][10/22] lr: 6.9685e-03 eta: 3 days, 21:03:26 time: 20.8409 data_time: 6.1127 memory: 6712 loss: 2.1082 loss_prob: 1.1444 loss_thr: 0.7752 loss_db: 0.1886
|
| 686 |
+
2023/02/24 05:44:14 - mmengine - INFO - Epoch(train) [7][15/22] lr: 6.9685e-03 eta: 3 days, 18:57:55 time: 5.6460 data_time: 0.0896 memory: 6712 loss: 2.0828 loss_prob: 1.1309 loss_thr: 0.7652 loss_db: 0.1867
|
| 687 |
+
2023/02/24 05:44:35 - mmengine - INFO - Epoch(train) [7][20/22] lr: 6.9685e-03 eta: 3 days, 16:56:45 time: 4.2613 data_time: 0.0588 memory: 6712 loss: 1.9454 loss_prob: 1.0347 loss_thr: 0.7355 loss_db: 0.1752
|
| 688 |
+
2023/02/24 05:44:42 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 689 |
+
2023/02/24 05:47:42 - mmengine - INFO - Epoch(train) [8][ 5/22] lr: 6.9632e-03 eta: 3 days, 21:35:37 time: 20.0738 data_time: 7.0659 memory: 6712 loss: 1.9103 loss_prob: 1.0182 loss_thr: 0.7198 loss_db: 0.1723
|
| 690 |
+
2023/02/24 05:48:18 - mmengine - INFO - Epoch(train) [8][10/22] lr: 6.9632e-03 eta: 3 days, 20:19:25 time: 21.6464 data_time: 7.0947 memory: 6712 loss: 1.9593 loss_prob: 1.0665 loss_thr: 0.7176 loss_db: 0.1751
|
| 691 |
+
2023/02/24 05:48:41 - mmengine - INFO - Epoch(train) [8][15/22] lr: 6.9632e-03 eta: 3 days, 18:33:12 time: 5.8713 data_time: 0.0769 memory: 6712 loss: 1.9544 loss_prob: 1.0733 loss_thr: 0.7049 loss_db: 0.1762
|
| 692 |
+
2023/02/24 05:49:01 - mmengine - INFO - Epoch(train) [8][20/22] lr: 6.9632e-03 eta: 3 days, 16:48:01 time: 4.3373 data_time: 0.0467 memory: 6712 loss: 1.8306 loss_prob: 0.9863 loss_thr: 0.6770 loss_db: 0.1673
|
| 693 |
+
2023/02/24 05:49:08 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 694 |
+
2023/02/24 05:52:08 - mmengine - INFO - Epoch(train) [9][ 5/22] lr: 6.9580e-03 eta: 3 days, 20:51:50 time: 20.0004 data_time: 6.3228 memory: 6712 loss: 1.9089 loss_prob: 1.0586 loss_thr: 0.6772 loss_db: 0.1731
|
| 695 |
+
2023/02/24 05:52:41 - mmengine - INFO - Epoch(train) [9][10/22] lr: 6.9580e-03 eta: 3 days, 19:38:00 time: 21.3337 data_time: 6.3790 memory: 6712 loss: 1.8955 loss_prob: 1.0480 loss_thr: 0.6761 loss_db: 0.1714
|
| 696 |
+
2023/02/24 05:53:02 - mmengine - INFO - Epoch(train) [9][15/22] lr: 6.9580e-03 eta: 3 days, 17:59:55 time: 5.3263 data_time: 0.0722 memory: 6712 loss: 1.7788 loss_prob: 0.9520 loss_thr: 0.6654 loss_db: 0.1614
|
| 697 |
+
2023/02/24 05:53:21 - mmengine - INFO - Epoch(train) [9][20/22] lr: 6.9580e-03 eta: 3 days, 16:25:34 time: 4.0420 data_time: 0.0361 memory: 6712 loss: 1.8003 loss_prob: 0.9682 loss_thr: 0.6678 loss_db: 0.1643
|
| 698 |
+
2023/02/24 05:53:31 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 699 |
+
2023/02/24 05:56:27 - mmengine - INFO - Epoch(train) [10][ 5/22] lr: 6.9527e-03 eta: 3 days, 20:00:04 time: 19.6905 data_time: 6.3250 memory: 6712 loss: 1.8357 loss_prob: 0.9859 loss_thr: 0.6834 loss_db: 0.1663
|
| 700 |
+
2023/02/24 05:57:04 - mmengine - INFO - Epoch(train) [10][10/22] lr: 6.9527e-03 eta: 3 days, 19:04:40 time: 21.3082 data_time: 6.3498 memory: 6712 loss: 1.8376 loss_prob: 0.9889 loss_thr: 0.6809 loss_db: 0.1677
|
| 701 |
+
2023/02/24 05:57:27 - mmengine - INFO - Epoch(train) [10][15/22] lr: 6.9527e-03 eta: 3 days, 17:43:00 time: 6.0559 data_time: 0.0570 memory: 6712 loss: 1.7998 loss_prob: 0.9688 loss_thr: 0.6660 loss_db: 0.1651
|
| 702 |
+
2023/02/24 05:57:48 - mmengine - INFO - Epoch(train) [10][20/22] lr: 6.9527e-03 eta: 3 days, 16:20:24 time: 4.4162 data_time: 0.0306 memory: 6712 loss: 1.8812 loss_prob: 1.0357 loss_thr: 0.6779 loss_db: 0.1676
|
| 703 |
+
2023/02/24 05:57:55 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 704 |
+
2023/02/24 06:01:01 - mmengine - INFO - Epoch(train) [11][ 5/22] lr: 6.9474e-03 eta: 3 days, 19:46:57 time: 20.5701 data_time: 7.2858 memory: 6712 loss: 1.8385 loss_prob: 1.0164 loss_thr: 0.6580 loss_db: 0.1641
|
| 705 |
+
2023/02/24 06:01:42 - mmengine - INFO - Epoch(train) [11][10/22] lr: 6.9474e-03 eta: 3 days, 19:04:25 time: 22.6877 data_time: 7.3177 memory: 6712 loss: 1.7372 loss_prob: 0.9383 loss_thr: 0.6403 loss_db: 0.1586
|
| 706 |
+
2023/02/24 06:02:04 - mmengine - INFO - Epoch(train) [11][15/22] lr: 6.9474e-03 eta: 3 days, 17:48:05 time: 6.3309 data_time: 0.0664 memory: 6712 loss: 1.8261 loss_prob: 1.0116 loss_thr: 0.6501 loss_db: 0.1644
|
| 707 |
+
2023/02/24 06:02:27 - mmengine - INFO - Epoch(train) [11][20/22] lr: 6.9474e-03 eta: 3 days, 16:36:23 time: 4.4944 data_time: 0.0463 memory: 6712 loss: 1.8030 loss_prob: 0.9974 loss_thr: 0.6439 loss_db: 0.1618
|
| 708 |
+
2023/02/24 06:02:35 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 709 |
+
2023/02/24 06:05:43 - mmengine - INFO - Epoch(train) [12][ 5/22] lr: 6.9422e-03 eta: 3 days, 19:50:54 time: 21.0802 data_time: 6.7792 memory: 6712 loss: 1.7311 loss_prob: 0.9384 loss_thr: 0.6339 loss_db: 0.1588
|
| 710 |
+
2023/02/24 06:06:16 - mmengine - INFO - Epoch(train) [12][10/22] lr: 6.9422e-03 eta: 3 days, 18:57:51 time: 22.1269 data_time: 6.7959 memory: 6712 loss: 1.7188 loss_prob: 0.9327 loss_thr: 0.6281 loss_db: 0.1580
|
| 711 |
+
2023/02/24 06:06:38 - mmengine - INFO - Epoch(train) [12][15/22] lr: 6.9422e-03 eta: 3 days, 17:47:34 time: 5.4922 data_time: 0.0768 memory: 6712 loss: 1.7922 loss_prob: 0.9895 loss_thr: 0.6431 loss_db: 0.1596
|
| 712 |
+
2023/02/24 06:06:59 - mmengine - INFO - Epoch(train) [12][20/22] lr: 6.9422e-03 eta: 3 days, 16:38:54 time: 4.2930 data_time: 0.0734 memory: 6712 loss: 1.8091 loss_prob: 1.0073 loss_thr: 0.6390 loss_db: 0.1628
|
| 713 |
+
2023/02/24 06:07:07 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 714 |
+
2023/02/24 06:10:14 - mmengine - INFO - Epoch(train) [13][ 5/22] lr: 6.9369e-03 eta: 3 days, 19:34:46 time: 20.8475 data_time: 6.4862 memory: 6712 loss: 1.7225 loss_prob: 0.9462 loss_thr: 0.6158 loss_db: 0.1605
|
| 715 |
+
2023/02/24 06:10:45 - mmengine - INFO - Epoch(train) [13][10/22] lr: 6.9369e-03 eta: 3 days, 18:42:55 time: 21.8411 data_time: 6.5244 memory: 6712 loss: 1.6861 loss_prob: 0.9208 loss_thr: 0.6085 loss_db: 0.1568
|
| 716 |
+
2023/02/24 06:11:08 - mmengine - INFO - Epoch(train) [13][15/22] lr: 6.9369e-03 eta: 3 days, 17:39:18 time: 5.3518 data_time: 0.0755 memory: 6712 loss: 1.6869 loss_prob: 0.9212 loss_thr: 0.6091 loss_db: 0.1566
|
| 717 |
+
2023/02/24 06:11:29 - mmengine - INFO - Epoch(train) [13][20/22] lr: 6.9369e-03 eta: 3 days, 16:36:44 time: 4.4030 data_time: 0.0427 memory: 6712 loss: 1.6707 loss_prob: 0.9171 loss_thr: 0.5988 loss_db: 0.1549
|
| 718 |
+
2023/02/24 06:11:39 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 719 |
+
2023/02/24 06:14:33 - mmengine - INFO - Epoch(train) [14][ 5/22] lr: 6.9317e-03 eta: 3 days, 19:01:21 time: 19.7550 data_time: 6.6183 memory: 6712 loss: 1.7619 loss_prob: 1.0020 loss_thr: 0.6010 loss_db: 0.1589
|
| 720 |
+
2023/02/24 06:15:10 - mmengine - INFO - Epoch(train) [14][10/22] lr: 6.9317e-03 eta: 3 days, 18:23:36 time: 21.1018 data_time: 6.6633 memory: 6712 loss: 1.7161 loss_prob: 0.9654 loss_thr: 0.5944 loss_db: 0.1563
|
| 721 |
+
2023/02/24 06:15:32 - mmengine - INFO - Epoch(train) [14][15/22] lr: 6.9317e-03 eta: 3 days, 17:22:58 time: 5.8873 data_time: 0.0648 memory: 6712 loss: 1.7192 loss_prob: 0.9679 loss_thr: 0.5954 loss_db: 0.1559
|
| 722 |
+
2023/02/24 06:15:54 - mmengine - INFO - Epoch(train) [14][20/22] lr: 6.9317e-03 eta: 3 days, 16:25:59 time: 4.3364 data_time: 0.0274 memory: 6712 loss: 1.6298 loss_prob: 0.8869 loss_thr: 0.5926 loss_db: 0.1503
|
| 723 |
+
2023/02/24 06:16:02 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 724 |
+
2023/02/24 06:19:00 - mmengine - INFO - Epoch(train) [15][ 5/22] lr: 6.9264e-03 eta: 3 days, 18:44:04 time: 19.8166 data_time: 6.2719 memory: 6712 loss: 1.6233 loss_prob: 0.8843 loss_thr: 0.5895 loss_db: 0.1495
|
| 725 |
+
2023/02/24 06:19:35 - mmengine - INFO - Epoch(train) [15][10/22] lr: 6.9264e-03 eta: 3 days, 18:05:44 time: 21.3018 data_time: 6.3262 memory: 6712 loss: 1.6084 loss_prob: 0.8760 loss_thr: 0.5845 loss_db: 0.1478
|
| 726 |
+
2023/02/24 06:19:56 - mmengine - INFO - Epoch(train) [15][15/22] lr: 6.9264e-03 eta: 3 days, 17:09:18 time: 5.6332 data_time: 0.0798 memory: 6712 loss: 1.5740 loss_prob: 0.8612 loss_thr: 0.5668 loss_db: 0.1460
|
| 727 |
+
2023/02/24 06:20:17 - mmengine - INFO - Epoch(train) [15][20/22] lr: 6.9264e-03 eta: 3 days, 16:14:55 time: 4.2267 data_time: 0.0394 memory: 6712 loss: 1.6627 loss_prob: 0.9368 loss_thr: 0.5743 loss_db: 0.1516
|
| 728 |
+
2023/02/24 06:20:27 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 729 |
+
2023/02/24 06:23:29 - mmengine - INFO - Epoch(train) [16][ 5/22] lr: 6.9211e-03 eta: 3 days, 18:31:35 time: 20.4682 data_time: 6.4376 memory: 6712 loss: 1.6751 loss_prob: 0.9439 loss_thr: 0.5791 loss_db: 0.1521
|
| 730 |
+
2023/02/24 06:24:03 - mmengine - INFO - Epoch(train) [16][10/22] lr: 6.9211e-03 eta: 3 days, 17:53:41 time: 21.5603 data_time: 6.4834 memory: 6712 loss: 1.5881 loss_prob: 0.8699 loss_thr: 0.5714 loss_db: 0.1468
|
| 731 |
+
2023/02/24 06:24:24 - mmengine - INFO - Epoch(train) [16][15/22] lr: 6.9211e-03 eta: 3 days, 17:01:54 time: 5.5439 data_time: 0.0674 memory: 6712 loss: 1.5751 loss_prob: 0.8581 loss_thr: 0.5713 loss_db: 0.1457
|
| 732 |
+
2023/02/24 06:24:46 - mmengine - INFO - Epoch(train) [16][20/22] lr: 6.9211e-03 eta: 3 days, 16:11:19 time: 4.3338 data_time: 0.0365 memory: 6712 loss: 1.6895 loss_prob: 0.9474 loss_thr: 0.5892 loss_db: 0.1528
|
| 733 |
+
2023/02/24 06:24:54 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 734 |
+
2023/02/24 06:27:53 - mmengine - INFO - Epoch(train) [17][ 5/22] lr: 6.9159e-03 eta: 3 days, 18:13:54 time: 20.1179 data_time: 7.1602 memory: 6712 loss: 1.5890 loss_prob: 0.8658 loss_thr: 0.5758 loss_db: 0.1473
|
| 735 |
+
2023/02/24 06:28:29 - mmengine - INFO - Epoch(train) [17][10/22] lr: 6.9159e-03 eta: 3 days, 17:40:34 time: 21.5151 data_time: 7.1956 memory: 6712 loss: 1.5827 loss_prob: 0.8728 loss_thr: 0.5623 loss_db: 0.1476
|
| 736 |
+
2023/02/24 06:28:52 - mmengine - INFO - Epoch(train) [17][15/22] lr: 6.9159e-03 eta: 3 days, 16:53:08 time: 5.8176 data_time: 0.0500 memory: 6712 loss: 1.5498 loss_prob: 0.8583 loss_thr: 0.5468 loss_db: 0.1447
|
| 737 |
+
2023/02/24 06:29:14 - mmengine - INFO - Epoch(train) [17][20/22] lr: 6.9159e-03 eta: 3 days, 16:06:35 time: 4.5159 data_time: 0.0371 memory: 6712 loss: 1.5092 loss_prob: 0.8323 loss_thr: 0.5363 loss_db: 0.1406
|
| 738 |
+
2023/02/24 06:29:21 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 739 |
+
2023/02/24 06:32:11 - mmengine - INFO - Epoch(train) [18][ 5/22] lr: 6.9106e-03 eta: 3 days, 17:49:46 time: 19.0947 data_time: 6.1514 memory: 6712 loss: 1.6499 loss_prob: 0.9514 loss_thr: 0.5495 loss_db: 0.1489
|
| 740 |
+
2023/02/24 06:32:41 - mmengine - INFO - Epoch(train) [18][10/22] lr: 6.9106e-03 eta: 3 days, 17:13:04 time: 19.9988 data_time: 6.1911 memory: 6712 loss: 1.5199 loss_prob: 0.8403 loss_thr: 0.5375 loss_db: 0.1421
|
| 741 |
+
2023/02/24 06:33:02 - mmengine - INFO - Epoch(train) [18][15/22] lr: 6.9106e-03 eta: 3 days, 16:26:56 time: 5.1812 data_time: 0.0669 memory: 6712 loss: 1.6338 loss_prob: 0.9296 loss_thr: 0.5540 loss_db: 0.1502
|
| 742 |
+
2023/02/24 06:33:23 - mmengine - INFO - Epoch(train) [18][20/22] lr: 6.9106e-03 eta: 3 days, 15:41:20 time: 4.1944 data_time: 0.0443 memory: 6712 loss: 1.6014 loss_prob: 0.9109 loss_thr: 0.5433 loss_db: 0.1472
|
| 743 |
+
2023/02/24 06:33:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 744 |
+
2023/02/24 06:36:13 - mmengine - INFO - Epoch(train) [19][ 5/22] lr: 6.9054e-03 eta: 3 days, 17:11:46 time: 18.3289 data_time: 6.0725 memory: 6712 loss: 1.5865 loss_prob: 0.9040 loss_thr: 0.5374 loss_db: 0.1451
|
| 745 |
+
2023/02/24 06:36:44 - mmengine - INFO - Epoch(train) [19][10/22] lr: 6.9054e-03 eta: 3 days, 16:38:02 time: 19.4111 data_time: 6.1041 memory: 6712 loss: 1.5683 loss_prob: 0.8961 loss_thr: 0.5286 loss_db: 0.1436
|
| 746 |
+
2023/02/24 06:37:03 - mmengine - INFO - Epoch(train) [19][15/22] lr: 6.9054e-03 eta: 3 days, 15:52:19 time: 5.0075 data_time: 0.0461 memory: 6712 loss: 1.4666 loss_prob: 0.8143 loss_thr: 0.5145 loss_db: 0.1378
|
| 747 |
+
2023/02/24 06:37:22 - mmengine - INFO - Epoch(train) [19][20/22] lr: 6.9054e-03 eta: 3 days, 15:07:51 time: 3.8092 data_time: 0.0239 memory: 6712 loss: 1.4776 loss_prob: 0.8202 loss_thr: 0.5185 loss_db: 0.1389
|
| 748 |
+
2023/02/24 06:37:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 749 |
+
2023/02/24 06:40:10 - mmengine - INFO - Epoch(train) [20][ 5/22] lr: 6.9001e-03 eta: 3 days, 16:31:37 time: 18.0048 data_time: 5.7458 memory: 6712 loss: 1.5888 loss_prob: 0.9128 loss_thr: 0.5328 loss_db: 0.1432
|
| 750 |
+
2023/02/24 06:40:37 - mmengine - INFO - Epoch(train) [20][10/22] lr: 6.9001e-03 eta: 3 days, 15:56:20 time: 18.7845 data_time: 5.7862 memory: 6712 loss: 1.6013 loss_prob: 0.9205 loss_thr: 0.5363 loss_db: 0.1445
|
| 751 |
+
2023/02/24 06:40:58 - mmengine - INFO - Epoch(train) [20][15/22] lr: 6.9001e-03 eta: 3 days, 15:14:41 time: 4.7755 data_time: 0.0685 memory: 6712 loss: 1.4801 loss_prob: 0.8185 loss_thr: 0.5228 loss_db: 0.1389
|
| 752 |
+
2023/02/24 06:41:17 - mmengine - INFO - Epoch(train) [20][20/22] lr: 6.9001e-03 eta: 3 days, 14:32:56 time: 3.9535 data_time: 0.0450 memory: 6712 loss: 1.4580 loss_prob: 0.8092 loss_thr: 0.5116 loss_db: 0.1372
|
| 753 |
+
2023/02/24 06:41:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
|
| 754 |
+
2023/02/24 06:41:23 - mmengine - INFO - Saving checkpoint at 20 epochs
|
| 755 |
+
2023/02/24 06:43:59 - mmengine - INFO - Epoch(val) [20][ 5/88] eta: 0:42:55 time: 31.0259 data_time: 0.0756 memory: 8651
|
model/config.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
file_client_args = dict(backend='disk')
|
| 2 |
+
model = dict(
|
| 3 |
+
type='DBNet',
|
| 4 |
+
backbone=dict(
|
| 5 |
+
type='mmdet.ResNet',
|
| 6 |
+
depth=18,
|
| 7 |
+
num_stages=4,
|
| 8 |
+
out_indices=(0, 1, 2, 3),
|
| 9 |
+
frozen_stages=-1,
|
| 10 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
| 11 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
|
| 12 |
+
norm_eval=False,
|
| 13 |
+
style='caffe'),
|
| 14 |
+
neck=dict(
|
| 15 |
+
type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
|
| 16 |
+
det_head=dict(
|
| 17 |
+
type='DBHead',
|
| 18 |
+
in_channels=256,
|
| 19 |
+
module_loss=dict(type='DBModuleLoss'),
|
| 20 |
+
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
|
| 21 |
+
data_preprocessor=dict(
|
| 22 |
+
type='TextDetDataPreprocessor',
|
| 23 |
+
mean=[123.675, 116.28, 103.53],
|
| 24 |
+
std=[58.395, 57.12, 57.375],
|
| 25 |
+
bgr_to_rgb=True,
|
| 26 |
+
pad_size_divisor=32))
|
| 27 |
+
train_pipeline = [
|
| 28 |
+
dict(
|
| 29 |
+
type='LoadImageFromFile',
|
| 30 |
+
file_client_args=dict(backend='disk'),
|
| 31 |
+
color_type='color_ignore_orientation'),
|
| 32 |
+
dict(
|
| 33 |
+
type='LoadOCRAnnotations',
|
| 34 |
+
with_polygon=True,
|
| 35 |
+
with_bbox=True,
|
| 36 |
+
with_label=True),
|
| 37 |
+
dict(
|
| 38 |
+
type='TorchVisionWrapper',
|
| 39 |
+
op='ColorJitter',
|
| 40 |
+
brightness=0.12549019607843137,
|
| 41 |
+
saturation=0.5),
|
| 42 |
+
dict(
|
| 43 |
+
type='ImgAugWrapper',
|
| 44 |
+
args=[['Fliplr', 0.5], {
|
| 45 |
+
'cls': 'Affine',
|
| 46 |
+
'rotate': [-10, 10]
|
| 47 |
+
}, ['Resize', [0.5, 3.0]]]),
|
| 48 |
+
dict(type='RandomCrop', min_side_ratio=0.1),
|
| 49 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 50 |
+
dict(type='Pad', size=(640, 640)),
|
| 51 |
+
dict(
|
| 52 |
+
type='PackTextDetInputs',
|
| 53 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
| 54 |
+
]
|
| 55 |
+
test_pipeline = [
|
| 56 |
+
dict(
|
| 57 |
+
type='LoadImageFromFile',
|
| 58 |
+
file_client_args=dict(backend='disk'),
|
| 59 |
+
color_type='color_ignore_orientation'),
|
| 60 |
+
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
| 61 |
+
dict(
|
| 62 |
+
type='LoadOCRAnnotations',
|
| 63 |
+
with_polygon=True,
|
| 64 |
+
with_bbox=True,
|
| 65 |
+
with_label=True),
|
| 66 |
+
dict(
|
| 67 |
+
type='PackTextDetInputs',
|
| 68 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
| 69 |
+
]
|
| 70 |
+
icdar2015_textdet_data_root = 'data/det/textdet-thvote'
|
| 71 |
+
icdar2015_textdet_train = dict(
|
| 72 |
+
type='OCRDataset',
|
| 73 |
+
data_root='data/det/textdet-thvote',
|
| 74 |
+
ann_file='textdet_train.json',
|
| 75 |
+
data_prefix=dict(img_path='imgs/'),
|
| 76 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 77 |
+
pipeline=[
|
| 78 |
+
dict(
|
| 79 |
+
type='LoadImageFromFile',
|
| 80 |
+
file_client_args=dict(backend='disk'),
|
| 81 |
+
color_type='color_ignore_orientation'),
|
| 82 |
+
dict(
|
| 83 |
+
type='LoadOCRAnnotations',
|
| 84 |
+
with_polygon=True,
|
| 85 |
+
with_bbox=True,
|
| 86 |
+
with_label=True),
|
| 87 |
+
dict(
|
| 88 |
+
type='TorchVisionWrapper',
|
| 89 |
+
op='ColorJitter',
|
| 90 |
+
brightness=0.12549019607843137,
|
| 91 |
+
saturation=0.5),
|
| 92 |
+
dict(
|
| 93 |
+
type='ImgAugWrapper',
|
| 94 |
+
args=[['Fliplr', 0.5], {
|
| 95 |
+
'cls': 'Affine',
|
| 96 |
+
'rotate': [-10, 10]
|
| 97 |
+
}, ['Resize', [0.5, 3.0]]]),
|
| 98 |
+
dict(type='RandomCrop', min_side_ratio=0.1),
|
| 99 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 100 |
+
dict(type='Pad', size=(640, 640)),
|
| 101 |
+
dict(
|
| 102 |
+
type='PackTextDetInputs',
|
| 103 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
| 104 |
+
])
|
| 105 |
+
icdar2015_textdet_test = dict(
|
| 106 |
+
type='OCRDataset',
|
| 107 |
+
data_root='data/det/textdet-thvote',
|
| 108 |
+
ann_file='textdet_test.json',
|
| 109 |
+
data_prefix=dict(img_path='imgs/'),
|
| 110 |
+
test_mode=True,
|
| 111 |
+
pipeline=[
|
| 112 |
+
dict(
|
| 113 |
+
type='LoadImageFromFile',
|
| 114 |
+
file_client_args=dict(backend='disk'),
|
| 115 |
+
color_type='color_ignore_orientation'),
|
| 116 |
+
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
| 117 |
+
dict(
|
| 118 |
+
type='LoadOCRAnnotations',
|
| 119 |
+
with_polygon=True,
|
| 120 |
+
with_bbox=True,
|
| 121 |
+
with_label=True),
|
| 122 |
+
dict(
|
| 123 |
+
type='PackTextDetInputs',
|
| 124 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
| 125 |
+
])
|
| 126 |
+
default_scope = 'mmocr'
|
| 127 |
+
env_cfg = dict(
|
| 128 |
+
cudnn_benchmark=True,
|
| 129 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 130 |
+
dist_cfg=dict(backend='nccl'))
|
| 131 |
+
randomness = dict(seed=None)
|
| 132 |
+
default_hooks = dict(
|
| 133 |
+
timer=dict(type='IterTimerHook'),
|
| 134 |
+
logger=dict(type='LoggerHook', interval=5),
|
| 135 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 136 |
+
checkpoint=dict(type='CheckpointHook', interval=20),
|
| 137 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 138 |
+
sync_buffer=dict(type='SyncBuffersHook'),
|
| 139 |
+
visualization=dict(
|
| 140 |
+
type='VisualizationHook',
|
| 141 |
+
interval=1,
|
| 142 |
+
enable=False,
|
| 143 |
+
show=False,
|
| 144 |
+
draw_gt=False,
|
| 145 |
+
draw_pred=False))
|
| 146 |
+
log_level = 'INFO'
|
| 147 |
+
log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True)
|
| 148 |
+
load_from = None
|
| 149 |
+
resume = False
|
| 150 |
+
val_evaluator = dict(type='HmeanIOUMetric')
|
| 151 |
+
test_evaluator = dict(type='HmeanIOUMetric')
|
| 152 |
+
vis_backends = [dict(type='LocalVisBackend')]
|
| 153 |
+
visualizer = dict(
|
| 154 |
+
type='TextDetLocalVisualizer',
|
| 155 |
+
name='visualizer',
|
| 156 |
+
vis_backends=[dict(type='LocalVisBackend')])
|
| 157 |
+
optim_wrapper = dict(
|
| 158 |
+
type='OptimWrapper',
|
| 159 |
+
optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001))
|
| 160 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20)
|
| 161 |
+
val_cfg = dict(type='ValLoop')
|
| 162 |
+
test_cfg = dict(type='TestLoop')
|
| 163 |
+
param_scheduler = [dict(type='PolyLR', power=0.9, eta_min=1e-07, end=1200)]
|
| 164 |
+
train_dataloader = dict(
|
| 165 |
+
batch_size=16,
|
| 166 |
+
num_workers=8,
|
| 167 |
+
persistent_workers=True,
|
| 168 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 169 |
+
dataset=dict(
|
| 170 |
+
type='OCRDataset',
|
| 171 |
+
data_root='data/det/textdet-thvote',
|
| 172 |
+
ann_file='textdet_train.json',
|
| 173 |
+
data_prefix=dict(img_path='imgs/'),
|
| 174 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 175 |
+
pipeline=[
|
| 176 |
+
dict(
|
| 177 |
+
type='LoadImageFromFile',
|
| 178 |
+
file_client_args=dict(backend='disk'),
|
| 179 |
+
color_type='color_ignore_orientation'),
|
| 180 |
+
dict(
|
| 181 |
+
type='LoadOCRAnnotations',
|
| 182 |
+
with_polygon=True,
|
| 183 |
+
with_bbox=True,
|
| 184 |
+
with_label=True),
|
| 185 |
+
dict(
|
| 186 |
+
type='TorchVisionWrapper',
|
| 187 |
+
op='ColorJitter',
|
| 188 |
+
brightness=0.12549019607843137,
|
| 189 |
+
saturation=0.5),
|
| 190 |
+
dict(
|
| 191 |
+
type='ImgAugWrapper',
|
| 192 |
+
args=[['Fliplr', 0.5], {
|
| 193 |
+
'cls': 'Affine',
|
| 194 |
+
'rotate': [-10, 10]
|
| 195 |
+
}, ['Resize', [0.5, 3.0]]]),
|
| 196 |
+
dict(type='RandomCrop', min_side_ratio=0.1),
|
| 197 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 198 |
+
dict(type='Pad', size=(640, 640)),
|
| 199 |
+
dict(
|
| 200 |
+
type='PackTextDetInputs',
|
| 201 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
| 202 |
+
]))
|
| 203 |
+
val_dataloader = dict(
|
| 204 |
+
batch_size=1,
|
| 205 |
+
num_workers=4,
|
| 206 |
+
persistent_workers=True,
|
| 207 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 208 |
+
dataset=dict(
|
| 209 |
+
type='OCRDataset',
|
| 210 |
+
data_root='data/det/textdet-thvote',
|
| 211 |
+
ann_file='textdet_test.json',
|
| 212 |
+
data_prefix=dict(img_path='imgs/'),
|
| 213 |
+
test_mode=True,
|
| 214 |
+
pipeline=[
|
| 215 |
+
dict(
|
| 216 |
+
type='LoadImageFromFile',
|
| 217 |
+
file_client_args=dict(backend='disk'),
|
| 218 |
+
color_type='color_ignore_orientation'),
|
| 219 |
+
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
| 220 |
+
dict(
|
| 221 |
+
type='LoadOCRAnnotations',
|
| 222 |
+
with_polygon=True,
|
| 223 |
+
with_bbox=True,
|
| 224 |
+
with_label=True),
|
| 225 |
+
dict(
|
| 226 |
+
type='PackTextDetInputs',
|
| 227 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape',
|
| 228 |
+
'scale_factor'))
|
| 229 |
+
]))
|
| 230 |
+
test_dataloader = dict(
|
| 231 |
+
batch_size=1,
|
| 232 |
+
num_workers=4,
|
| 233 |
+
persistent_workers=True,
|
| 234 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 235 |
+
dataset=dict(
|
| 236 |
+
type='OCRDataset',
|
| 237 |
+
data_root='data/det/textdet-thvote',
|
| 238 |
+
ann_file='textdet_test.json',
|
| 239 |
+
data_prefix=dict(img_path='imgs/'),
|
| 240 |
+
test_mode=True,
|
| 241 |
+
pipeline=[
|
| 242 |
+
dict(
|
| 243 |
+
type='LoadImageFromFile',
|
| 244 |
+
file_client_args=dict(backend='disk'),
|
| 245 |
+
color_type='color_ignore_orientation'),
|
| 246 |
+
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
| 247 |
+
dict(
|
| 248 |
+
type='LoadOCRAnnotations',
|
| 249 |
+
with_polygon=True,
|
| 250 |
+
with_bbox=True,
|
| 251 |
+
with_label=True),
|
| 252 |
+
dict(
|
| 253 |
+
type='PackTextDetInputs',
|
| 254 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape',
|
| 255 |
+
'scale_factor'))
|
| 256 |
+
]))
|
| 257 |
+
auto_scale_lr = dict(base_batch_size=16)
|
| 258 |
+
launcher = 'none'
|
| 259 |
+
work_dir = './work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015'
|
model/epoch_20.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d6272124c7fcedcdb64c2de3e82d1d6588f9f5f45abaa114048badaeb887a29
|
| 3 |
+
size 98924057
|
model/epoch_40.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c73dfa8e57af4ec4080e6b60d58e1d2d26d212ea93d3fcab0d9a23e7713c48e
|
| 3 |
+
size 98980313
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
requests
|
| 5 |
+
openmim
|
| 6 |
+
mmdet>=3.0.0rc0
|
| 7 |
+
mmocr>=1.0.0rc0
|