Spaces:
Runtime error
Runtime error
First commit
Browse files- app.py +87 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.system('pip install git+https://github.com/huggingface/transformers.git --upgrade')
|
| 3 |
+
os.system('pip install pyyaml==5.1')
|
| 4 |
+
# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
|
| 5 |
+
os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html')
|
| 6 |
+
|
| 7 |
+
# install detectron2 that matches pytorch 1.8
|
| 8 |
+
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
|
| 9 |
+
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
|
| 10 |
+
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import numpy as np
|
| 13 |
+
from transformers import LayoutLMv2FeatureExtractor, LayoutLMv2Tokenizer, LayoutLMV2ForTokenClassification
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 16 |
+
|
| 17 |
+
ds = load_dataset("hf-internal-testing/fixtures_docvqa", split="test")
|
| 18 |
+
|
| 19 |
+
image = Image.open(ds[0]["file"]).convert("RGB")
|
| 20 |
+
image.save("document.png")
|
| 21 |
+
|
| 22 |
+
feature_extractor = LayoutLMv2FeatureExtractor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 23 |
+
tokenizer = LayoutLMv2Tokenizer.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 24 |
+
model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd")
|
| 25 |
+
|
| 26 |
+
def unnormalize_box(bbox, width, height):
|
| 27 |
+
return [
|
| 28 |
+
width * (bbox[0] / 1000),
|
| 29 |
+
height * (bbox[1] / 1000),
|
| 30 |
+
width * (bbox[2] / 1000),
|
| 31 |
+
height * (bbox[3] / 1000),
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
def iob_to_label(label):
|
| 35 |
+
label = label[2:]
|
| 36 |
+
if not label:
|
| 37 |
+
return 'other'
|
| 38 |
+
return label
|
| 39 |
+
|
| 40 |
+
def process_image(image):
|
| 41 |
+
width, height = image.size
|
| 42 |
+
|
| 43 |
+
# get words, boxes
|
| 44 |
+
encoding_feature_extractor = feature_extractor(image, return_tensors="pt")
|
| 45 |
+
words, boxes = encoding_feature_extractor.words, encoding_feature_extractor.boxes
|
| 46 |
+
|
| 47 |
+
# encode
|
| 48 |
+
encoding = tokenizer(words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt")
|
| 49 |
+
offset_mapping = encoding.pop('offset_mapping')
|
| 50 |
+
encoding["image"] = encoding_feature_extractor.pixel_values
|
| 51 |
+
|
| 52 |
+
# forward pass
|
| 53 |
+
outputs = model(**encoding)
|
| 54 |
+
|
| 55 |
+
# get predictions
|
| 56 |
+
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
| 57 |
+
token_boxes = encoding.bbox.squeeze().tolist()
|
| 58 |
+
|
| 59 |
+
# only keep non-subword predictions
|
| 60 |
+
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
| 61 |
+
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
| 62 |
+
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
| 63 |
+
|
| 64 |
+
# draw predictions over the image
|
| 65 |
+
draw = ImageDraw.Draw(image)
|
| 66 |
+
font = ImageFont.load_default()
|
| 67 |
+
for prediction, box in zip(true_predictions, true_boxes):
|
| 68 |
+
predicted_label = iob_to_label(prediction).lower()
|
| 69 |
+
draw.rectangle(box, outline=label2color[predicted_label])
|
| 70 |
+
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
|
| 71 |
+
|
| 72 |
+
return image
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
title = "Interactive demo: LayoutLMv2"
|
| 76 |
+
description = "Demo for Microsoft's LayoutLMv2, a Transformer for state-of-the-art document image understanding tasks. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
| 77 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2012.14740'>LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm'>Github Repo</a></p>"
|
| 78 |
+
examples =[['document.png']]
|
| 79 |
+
|
| 80 |
+
iface = gr.Interface(fn=process_image,
|
| 81 |
+
inputs=gr.inputs.Image(shape=(480, 480), type="pil"),
|
| 82 |
+
outputs=gr.outputs.Image(type='pil', label=f'annotated image'),
|
| 83 |
+
title=title,
|
| 84 |
+
description=description,
|
| 85 |
+
article=article,
|
| 86 |
+
examples=examples)
|
| 87 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
Pillow
|
| 3 |
+
numpy
|
| 4 |
+
datasets
|