nikhilkomakula commited on
Commit
f19541b
·
1 Parent(s): fef812c

Minor Updates

Browse files
src/generation/generate_response.py CHANGED
@@ -1,4 +1,5 @@
1
  # import libraries
 
2
  from src.retrieval.retriever_chain import get_base_retriever, load_hf_llm, create_qa_chain
3
 
4
  # constants
@@ -45,7 +46,11 @@ def generate_response(message, history):
45
  """
46
 
47
  # invoke chain
 
 
48
  response = global_qa_chain.invoke(message)
49
- print(response)
 
 
50
 
51
  return response
 
1
  # import libraries
2
+ import time
3
  from src.retrieval.retriever_chain import get_base_retriever, load_hf_llm, create_qa_chain
4
 
5
  # constants
 
46
  """
47
 
48
  # invoke chain
49
+ print("Question:", message)
50
+ start_time = time.time()
51
  response = global_qa_chain.invoke(message)
52
+ print("Answer:", response)
53
+ end_time = time.time()
54
+ print("Response Time:", "{:.2f}".format(round(end_time - start_time, 2)))
55
 
56
  return response
src/indexing/build_indexes.py CHANGED
@@ -35,9 +35,8 @@ def load_embedding_model():
35
  model_name=EMBEDDING_MODEL,
36
  model_kwargs={"device": device},
37
  encode_kwargs={
38
- "normalize_embeddings": True
39
- }, # set True to compute cosine similarity
40
- cache_folder="./.cache"
41
  )
42
 
43
  # To get the value of the max sequence_length, we will query the underlying `SentenceTransformer` object used in the RecursiveCharacterTextSplitter.
 
35
  model_name=EMBEDDING_MODEL,
36
  model_kwargs={"device": device},
37
  encode_kwargs={
38
+ "normalize_embeddings": True # set True to compute cosine similarity
39
+ }
 
40
  )
41
 
42
  # To get the value of the max sequence_length, we will query the underlying `SentenceTransformer` object used in the RecursiveCharacterTextSplitter.