Spaces:
Paused
Paused
| #!/usr/bin/python | |
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the BSD-style license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # | |
| # LASER Language-Agnostic SEntence Representations | |
| # is a toolkit to calculate multilingual sentence embeddings | |
| # and to use them for document classification, bitext filtering | |
| # and mining | |
| # | |
| # -------------------------------------------------------- | |
| # | |
| # Calculate embeddings of MLDoc corpus | |
| import os | |
| import sys | |
| import argparse | |
| # get environment | |
| assert os.environ.get('LASER'), 'Please set the enviornment variable LASER' | |
| LASER = os.environ['LASER'] | |
| sys.path.append(LASER + '/source') | |
| sys.path.append(LASER + '/source/tools') | |
| from embed import SentenceEncoder, EncodeLoad, EncodeFile | |
| from text_processing import Token, BPEfastApply, SplitLines, JoinEmbed | |
| ############################################################################### | |
| parser = argparse.ArgumentParser('LASER: calculate embeddings for MLDoc') | |
| parser.add_argument( | |
| '--mldoc', type=str, default='MLDoc', | |
| help='Directory of the MLDoc corpus') | |
| parser.add_argument( | |
| '--data_dir', type=str, default='embed', | |
| help='Base directory for created files') | |
| # options for encoder | |
| parser.add_argument( | |
| '--encoder', type=str, required=True, | |
| help='Encoder to be used') | |
| parser.add_argument( | |
| '--bpe_codes', type=str, required=True, | |
| help='Directory of the tokenized data') | |
| parser.add_argument( | |
| '--lang', '-L', nargs='+', default=None, | |
| help="List of languages to test on") | |
| parser.add_argument( | |
| '--buffer-size', type=int, default=10000, | |
| help='Buffer size (sentences)') | |
| parser.add_argument( | |
| '--max-tokens', type=int, default=12000, | |
| help='Maximum number of tokens to process in a batch') | |
| parser.add_argument( | |
| '--max-sentences', type=int, default=None, | |
| help='Maximum number of sentences to process in a batch') | |
| parser.add_argument( | |
| '--cpu', action='store_true', | |
| help='Use CPU instead of GPU') | |
| parser.add_argument( | |
| '--verbose', action='store_true', | |
| help='Detailed output') | |
| args = parser.parse_args() | |
| print('LASER: calculate embeddings for MLDoc') | |
| if not os.path.exists(args.data_dir): | |
| os.mkdir(args.data_dir) | |
| enc = EncodeLoad(args) | |
| print('\nProcessing:') | |
| for part in ('train1000', 'dev', 'test'): | |
| # for lang in "en" if part == 'train1000' else args.lang: | |
| for lang in args.lang: | |
| cfname = os.path.join(args.data_dir, 'mldoc.' + part) | |
| Token(cfname + '.txt.' + lang, | |
| cfname + '.tok.' + lang, | |
| lang=lang, | |
| romanize=(True if lang == 'el' else False), | |
| lower_case=True, gzip=False, | |
| verbose=args.verbose, over_write=False) | |
| SplitLines(cfname + '.tok.' + lang, | |
| cfname + '.split.' + lang, | |
| cfname + '.sid.' + lang) | |
| BPEfastApply(cfname + '.split.' + lang, | |
| cfname + '.split.bpe.' + lang, | |
| args.bpe_codes, | |
| verbose=args.verbose, over_write=False) | |
| EncodeFile(enc, | |
| cfname + '.split.bpe.' + lang, | |
| cfname + '.split.enc.' + lang, | |
| verbose=args.verbose, over_write=False, | |
| buffer_size=args.buffer_size) | |
| JoinEmbed(cfname + '.split.enc.' + lang, | |
| cfname + '.sid.' + lang, | |
| cfname + '.enc.' + lang) | |