correct average values
Browse files
app.py
CHANGED
|
@@ -12,7 +12,7 @@ INTRODUCTION_TEXT = """
|
|
| 12 |
|
| 13 |
results = [
|
| 14 |
{
|
| 15 |
-
'
|
| 16 |
'Model Name': '[XLMR-base](https://huggingface.co/FacebookAI/xlm-roberta-base)',
|
| 17 |
'Model Size (Million Parameters)': 279,
|
| 18 |
'Embedding Dimensions': 768,
|
|
@@ -23,7 +23,7 @@ results = [
|
|
| 23 |
'Retrieval (3 datasets)': 5.57,
|
| 24 |
},
|
| 25 |
{
|
| 26 |
-
'
|
| 27 |
'Model Name': '[XLMR-large](https://huggingface.co/FacebookAI/xlm-roberta-large)',
|
| 28 |
'Model Size (Million Parameters)': 561,
|
| 29 |
'Embedding Dimensions': 1024,
|
|
@@ -34,7 +34,7 @@ results = [
|
|
| 34 |
'Retrieval (3 datasets)': 11.80,
|
| 35 |
},
|
| 36 |
{
|
| 37 |
-
'
|
| 38 |
'Model Name': '[WangchanBERTa](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased)',
|
| 39 |
'Model Size (Million Parameters)': 106,
|
| 40 |
'Embedding Dimensions': 768,
|
|
@@ -45,7 +45,7 @@ results = [
|
|
| 45 |
'Retrieval (3 datasets)': 19.49,
|
| 46 |
},
|
| 47 |
{
|
| 48 |
-
'
|
| 49 |
'Model Name': '[PhayaThaiBERT](https://huggingface.co/clicknext/phayathaibert)',
|
| 50 |
'Model Size (Million Parameters)': 278,
|
| 51 |
'Embedding Dimensions': 768,
|
|
@@ -56,7 +56,7 @@ results = [
|
|
| 56 |
'Retrieval (3 datasets)': 56.31,
|
| 57 |
},
|
| 58 |
{
|
| 59 |
-
'
|
| 60 |
'Model Name': '[MPNet-multilingual](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)',
|
| 61 |
'Model Size (Million Parameters)': 278,
|
| 62 |
'Embedding Dimensions': 768,
|
|
@@ -67,7 +67,7 @@ results = [
|
|
| 67 |
'Retrieval (3 datasets)': 64.13,
|
| 68 |
},
|
| 69 |
{
|
| 70 |
-
'
|
| 71 |
'Model Name': '[DistilUSE-multilingual](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2)',
|
| 72 |
'Model Size (Million Parameters)': 135,
|
| 73 |
'Embedding Dimensions': 512,
|
|
@@ -78,7 +78,7 @@ results = [
|
|
| 78 |
'Retrieval (3 datasets)': 42.72,
|
| 79 |
},
|
| 80 |
{
|
| 81 |
-
'
|
| 82 |
'Model Name': '[BGE-M3](https://huggingface.co/BAAI/bge-m3)',
|
| 83 |
'Model Size (Million Parameters)': 570,
|
| 84 |
'Embedding Dimensions': 1024,
|
|
@@ -89,7 +89,7 @@ results = [
|
|
| 89 |
'Retrieval (3 datasets)': 91.42,
|
| 90 |
},
|
| 91 |
{
|
| 92 |
-
'
|
| 93 |
'Model Name': '[SimCSE-XLMR-base](https://huggingface.co/kornwtp/simcse-model-XLMR)',
|
| 94 |
'Model Size (Million Parameters)': 279,
|
| 95 |
'Embedding Dimensions': 768,
|
|
@@ -100,7 +100,7 @@ results = [
|
|
| 100 |
'Retrieval (3 datasets)': 54.17,
|
| 101 |
},
|
| 102 |
{
|
| 103 |
-
'
|
| 104 |
'Model Name': '[SimCSE-WangchanBERTa](https://huggingface.co/kornwtp/simcse-model-wangchanberta)',
|
| 105 |
'Model Size (Million Parameters)': 106,
|
| 106 |
'Embedding Dimensions': 768,
|
|
@@ -111,7 +111,7 @@ results = [
|
|
| 111 |
'Retrieval (3 datasets)': 51.05,
|
| 112 |
},
|
| 113 |
{
|
| 114 |
-
'
|
| 115 |
'Model Name': '[SimCSE-PhayaThaiBERT](https://huggingface.co/kornwtp/simcse-model-phayathaibert)',
|
| 116 |
'Model Size (Million Parameters)': 278,
|
| 117 |
'Embedding Dimensions': 768,
|
|
@@ -122,7 +122,7 @@ results = [
|
|
| 122 |
'Retrieval (3 datasets)': 66.05,
|
| 123 |
},
|
| 124 |
{
|
| 125 |
-
'
|
| 126 |
'Model Name': '[SCT-XLMR-base](https://huggingface.co/kornwtp/SCT-model-XLMR)',
|
| 127 |
'Model Size (Million Parameters)': 279,
|
| 128 |
'Embedding Dimensions': 768,
|
|
@@ -133,7 +133,7 @@ results = [
|
|
| 133 |
'Retrieval (3 datasets)': 54.90,
|
| 134 |
},
|
| 135 |
{
|
| 136 |
-
'
|
| 137 |
'Model Name': '[SCT-WangchanBERTa](https://huggingface.co/kornwtp/SCT-model-wangchanberta)',
|
| 138 |
'Model Size (Million Parameters)': 106,
|
| 139 |
'Embedding Dimensions': 768,
|
|
@@ -144,7 +144,7 @@ results = [
|
|
| 144 |
'Retrieval (3 datasets)': 63.83,
|
| 145 |
},
|
| 146 |
{
|
| 147 |
-
'
|
| 148 |
'Model Name': '[SCT-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-model-phayathaibert)',
|
| 149 |
'Model Size (Million Parameters)': 278,
|
| 150 |
'Embedding Dimensions': 768,
|
|
@@ -155,7 +155,7 @@ results = [
|
|
| 155 |
'Retrieval (3 datasets)': 66.20,
|
| 156 |
},
|
| 157 |
{
|
| 158 |
-
'
|
| 159 |
'Model Name': '[SCT-KD-XLMR-base](https://huggingface.co/kornwtp/SCT-KD-model-XLMR)',
|
| 160 |
'Model Size (Million Parameters)': 279,
|
| 161 |
'Embedding Dimensions': 768,
|
|
@@ -166,7 +166,7 @@ results = [
|
|
| 166 |
'Retrieval (3 datasets)': 65.02,
|
| 167 |
},
|
| 168 |
{
|
| 169 |
-
'
|
| 170 |
'Model Name': '[SCT-KD-WangchanBERTa](https://huggingface.co/kornwtp/SCT-KD-model-wangchanberta)',
|
| 171 |
'Model Size (Million Parameters)': 106,
|
| 172 |
'Embedding Dimensions': 768,
|
|
@@ -177,7 +177,7 @@ results = [
|
|
| 177 |
'Retrieval (3 datasets)': 62.38,
|
| 178 |
},
|
| 179 |
{
|
| 180 |
-
'
|
| 181 |
'Model Name': '[SCT-KD-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-KD-model-phayathaibert)',
|
| 182 |
'Model Size (Million Parameters)': 278,
|
| 183 |
'Embedding Dimensions': 768,
|
|
@@ -188,7 +188,7 @@ results = [
|
|
| 188 |
'Retrieval (3 datasets)': 67.94,
|
| 189 |
},
|
| 190 |
{
|
| 191 |
-
'
|
| 192 |
'Model Name': '[ConGen-XLMR-base](https://huggingface.co/kornwtp/ConGen-model-XLMR)',
|
| 193 |
'Model Size (Million Parameters)': 279,
|
| 194 |
'Embedding Dimensions': 768,
|
|
@@ -199,7 +199,7 @@ results = [
|
|
| 199 |
'Retrieval (3 datasets)': 68.03,
|
| 200 |
},
|
| 201 |
{
|
| 202 |
-
'
|
| 203 |
'Model Name': '[ConGen-WangchanBERTa](https://huggingface.co/kornwtp/ConGen-model-wangchanberta)',
|
| 204 |
'Model Size (Million Parameters)': 106,
|
| 205 |
'Embedding Dimensions': 768,
|
|
@@ -210,7 +210,7 @@ results = [
|
|
| 210 |
'Retrieval (3 datasets)': 67.66,
|
| 211 |
},
|
| 212 |
{
|
| 213 |
-
'
|
| 214 |
'Model Name': '[ConGen-PhayaThaiBERT](https://huggingface.co/kornwtp/ConGen-model-phayathaibert)',
|
| 215 |
'Model Size (Million Parameters)': 278,
|
| 216 |
'Embedding Dimensions': 768,
|
|
@@ -221,7 +221,7 @@ results = [
|
|
| 221 |
'Retrieval (3 datasets)': 68.04,
|
| 222 |
},
|
| 223 |
{
|
| 224 |
-
'
|
| 225 |
'Model Name': '[E5-Mistral-7B-Instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct)',
|
| 226 |
'Model Size (Million Parameters)': 7110,
|
| 227 |
'Embedding Dimensions': 4096,
|
|
@@ -232,7 +232,7 @@ results = [
|
|
| 232 |
'Retrieval (3 datasets)': 86.80,
|
| 233 |
},
|
| 234 |
{
|
| 235 |
-
'
|
| 236 |
'Model Name': '[gte-Qwen2-7B-Instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct)',
|
| 237 |
'Model Size (Million Parameters)': 7610,
|
| 238 |
'Embedding Dimensions': 3584,
|
|
@@ -243,7 +243,7 @@ results = [
|
|
| 243 |
'Retrieval (3 datasets)': 38.31,
|
| 244 |
},
|
| 245 |
{
|
| 246 |
-
'
|
| 247 |
'Model Name': '[GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)',
|
| 248 |
'Model Size (Million Parameters)': 7240,
|
| 249 |
'Embedding Dimensions': 4096,
|
|
@@ -254,7 +254,7 @@ results = [
|
|
| 254 |
'Retrieval (3 datasets)': 22.79,
|
| 255 |
},
|
| 256 |
{
|
| 257 |
-
'
|
| 258 |
'Model Name': '[Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)',
|
| 259 |
'Model Size (Million Parameters)': 8030,
|
| 260 |
'Embedding Dimensions': 4096,
|
|
@@ -265,7 +265,7 @@ results = [
|
|
| 265 |
'Retrieval (3 datasets)': 47.93,
|
| 266 |
},
|
| 267 |
{
|
| 268 |
-
'
|
| 269 |
'Model Name': '[Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)',
|
| 270 |
'Model Size (Million Parameters)': 8030,
|
| 271 |
'Embedding Dimensions': 4096,
|
|
@@ -276,7 +276,7 @@ results = [
|
|
| 276 |
'Retrieval (3 datasets)': 50.38,
|
| 277 |
},
|
| 278 |
{
|
| 279 |
-
'
|
| 280 |
'Model Name': '[Llama3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)',
|
| 281 |
'Model Size (Million Parameters)': 8030,
|
| 282 |
'Embedding Dimensions': 4096,
|
|
@@ -287,7 +287,7 @@ results = [
|
|
| 287 |
'Retrieval (3 datasets)': 43.64,
|
| 288 |
},
|
| 289 |
{
|
| 290 |
-
'
|
| 291 |
'Model Name': '[Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)',
|
| 292 |
'Model Size (Million Parameters)': 8030,
|
| 293 |
'Embedding Dimensions': 4096,
|
|
@@ -298,7 +298,7 @@ results = [
|
|
| 298 |
'Retrieval (3 datasets)': 43.63,
|
| 299 |
},
|
| 300 |
{
|
| 301 |
-
'
|
| 302 |
'Model Name': '[Typhoon-8B-Instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct)',
|
| 303 |
'Model Size (Million Parameters)': 8030,
|
| 304 |
'Embedding Dimensions': 4096,
|
|
@@ -309,7 +309,7 @@ results = [
|
|
| 309 |
'Retrieval (3 datasets)': 52.65,
|
| 310 |
},
|
| 311 |
{
|
| 312 |
-
'
|
| 313 |
'Model Name': 'Cohere-embed-multilingual-v2.0',
|
| 314 |
'Model Size (Million Parameters)': "N/A",
|
| 315 |
'Embedding Dimensions': 768,
|
|
@@ -320,7 +320,7 @@ results = [
|
|
| 320 |
'Retrieval (3 datasets)': 85.23,
|
| 321 |
},
|
| 322 |
{
|
| 323 |
-
'
|
| 324 |
'Model Name': 'Cohere-embed-multilingual-v3.0',
|
| 325 |
'Model Size (Million Parameters)': "N/A",
|
| 326 |
'Embedding Dimensions': 1024,
|
|
@@ -331,7 +331,7 @@ results = [
|
|
| 331 |
'Retrieval (3 datasets)': 91.43,
|
| 332 |
},
|
| 333 |
{
|
| 334 |
-
'
|
| 335 |
'Model Name': 'Openai-text-embedding-3-large',
|
| 336 |
'Model Size (Million Parameters)': "N/A",
|
| 337 |
'Embedding Dimensions': 3072,
|
|
@@ -343,6 +343,16 @@ results = [
|
|
| 343 |
},
|
| 344 |
]
|
| 345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
# Sort by average
|
| 347 |
results = sorted(results, key=lambda x: x['Average (8 datasets)'], reverse=True)
|
| 348 |
|
|
|
|
| 12 |
|
| 13 |
results = [
|
| 14 |
{
|
| 15 |
+
'Type': 'π’',
|
| 16 |
'Model Name': '[XLMR-base](https://huggingface.co/FacebookAI/xlm-roberta-base)',
|
| 17 |
'Model Size (Million Parameters)': 279,
|
| 18 |
'Embedding Dimensions': 768,
|
|
|
|
| 23 |
'Retrieval (3 datasets)': 5.57,
|
| 24 |
},
|
| 25 |
{
|
| 26 |
+
'Type': 'π’',
|
| 27 |
'Model Name': '[XLMR-large](https://huggingface.co/FacebookAI/xlm-roberta-large)',
|
| 28 |
'Model Size (Million Parameters)': 561,
|
| 29 |
'Embedding Dimensions': 1024,
|
|
|
|
| 34 |
'Retrieval (3 datasets)': 11.80,
|
| 35 |
},
|
| 36 |
{
|
| 37 |
+
'Type': 'π’',
|
| 38 |
'Model Name': '[WangchanBERTa](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased)',
|
| 39 |
'Model Size (Million Parameters)': 106,
|
| 40 |
'Embedding Dimensions': 768,
|
|
|
|
| 45 |
'Retrieval (3 datasets)': 19.49,
|
| 46 |
},
|
| 47 |
{
|
| 48 |
+
'Type': 'π’',
|
| 49 |
'Model Name': '[PhayaThaiBERT](https://huggingface.co/clicknext/phayathaibert)',
|
| 50 |
'Model Size (Million Parameters)': 278,
|
| 51 |
'Embedding Dimensions': 768,
|
|
|
|
| 56 |
'Retrieval (3 datasets)': 56.31,
|
| 57 |
},
|
| 58 |
{
|
| 59 |
+
'Type': 'π’',
|
| 60 |
'Model Name': '[MPNet-multilingual](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)',
|
| 61 |
'Model Size (Million Parameters)': 278,
|
| 62 |
'Embedding Dimensions': 768,
|
|
|
|
| 67 |
'Retrieval (3 datasets)': 64.13,
|
| 68 |
},
|
| 69 |
{
|
| 70 |
+
'Type': 'π’',
|
| 71 |
'Model Name': '[DistilUSE-multilingual](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2)',
|
| 72 |
'Model Size (Million Parameters)': 135,
|
| 73 |
'Embedding Dimensions': 512,
|
|
|
|
| 78 |
'Retrieval (3 datasets)': 42.72,
|
| 79 |
},
|
| 80 |
{
|
| 81 |
+
'Type': 'π’',
|
| 82 |
'Model Name': '[BGE-M3](https://huggingface.co/BAAI/bge-m3)',
|
| 83 |
'Model Size (Million Parameters)': 570,
|
| 84 |
'Embedding Dimensions': 1024,
|
|
|
|
| 89 |
'Retrieval (3 datasets)': 91.42,
|
| 90 |
},
|
| 91 |
{
|
| 92 |
+
'Type': 'π’',
|
| 93 |
'Model Name': '[SimCSE-XLMR-base](https://huggingface.co/kornwtp/simcse-model-XLMR)',
|
| 94 |
'Model Size (Million Parameters)': 279,
|
| 95 |
'Embedding Dimensions': 768,
|
|
|
|
| 100 |
'Retrieval (3 datasets)': 54.17,
|
| 101 |
},
|
| 102 |
{
|
| 103 |
+
'Type': 'π’',
|
| 104 |
'Model Name': '[SimCSE-WangchanBERTa](https://huggingface.co/kornwtp/simcse-model-wangchanberta)',
|
| 105 |
'Model Size (Million Parameters)': 106,
|
| 106 |
'Embedding Dimensions': 768,
|
|
|
|
| 111 |
'Retrieval (3 datasets)': 51.05,
|
| 112 |
},
|
| 113 |
{
|
| 114 |
+
'Type': 'π’',
|
| 115 |
'Model Name': '[SimCSE-PhayaThaiBERT](https://huggingface.co/kornwtp/simcse-model-phayathaibert)',
|
| 116 |
'Model Size (Million Parameters)': 278,
|
| 117 |
'Embedding Dimensions': 768,
|
|
|
|
| 122 |
'Retrieval (3 datasets)': 66.05,
|
| 123 |
},
|
| 124 |
{
|
| 125 |
+
'Type': 'π’',
|
| 126 |
'Model Name': '[SCT-XLMR-base](https://huggingface.co/kornwtp/SCT-model-XLMR)',
|
| 127 |
'Model Size (Million Parameters)': 279,
|
| 128 |
'Embedding Dimensions': 768,
|
|
|
|
| 133 |
'Retrieval (3 datasets)': 54.90,
|
| 134 |
},
|
| 135 |
{
|
| 136 |
+
'Type': 'π’',
|
| 137 |
'Model Name': '[SCT-WangchanBERTa](https://huggingface.co/kornwtp/SCT-model-wangchanberta)',
|
| 138 |
'Model Size (Million Parameters)': 106,
|
| 139 |
'Embedding Dimensions': 768,
|
|
|
|
| 144 |
'Retrieval (3 datasets)': 63.83,
|
| 145 |
},
|
| 146 |
{
|
| 147 |
+
'Type': 'π’',
|
| 148 |
'Model Name': '[SCT-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-model-phayathaibert)',
|
| 149 |
'Model Size (Million Parameters)': 278,
|
| 150 |
'Embedding Dimensions': 768,
|
|
|
|
| 155 |
'Retrieval (3 datasets)': 66.20,
|
| 156 |
},
|
| 157 |
{
|
| 158 |
+
'Type': 'π’',
|
| 159 |
'Model Name': '[SCT-KD-XLMR-base](https://huggingface.co/kornwtp/SCT-KD-model-XLMR)',
|
| 160 |
'Model Size (Million Parameters)': 279,
|
| 161 |
'Embedding Dimensions': 768,
|
|
|
|
| 166 |
'Retrieval (3 datasets)': 65.02,
|
| 167 |
},
|
| 168 |
{
|
| 169 |
+
'Type': 'π’',
|
| 170 |
'Model Name': '[SCT-KD-WangchanBERTa](https://huggingface.co/kornwtp/SCT-KD-model-wangchanberta)',
|
| 171 |
'Model Size (Million Parameters)': 106,
|
| 172 |
'Embedding Dimensions': 768,
|
|
|
|
| 177 |
'Retrieval (3 datasets)': 62.38,
|
| 178 |
},
|
| 179 |
{
|
| 180 |
+
'Type': 'π’',
|
| 181 |
'Model Name': '[SCT-KD-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-KD-model-phayathaibert)',
|
| 182 |
'Model Size (Million Parameters)': 278,
|
| 183 |
'Embedding Dimensions': 768,
|
|
|
|
| 188 |
'Retrieval (3 datasets)': 67.94,
|
| 189 |
},
|
| 190 |
{
|
| 191 |
+
'Type': 'π’',
|
| 192 |
'Model Name': '[ConGen-XLMR-base](https://huggingface.co/kornwtp/ConGen-model-XLMR)',
|
| 193 |
'Model Size (Million Parameters)': 279,
|
| 194 |
'Embedding Dimensions': 768,
|
|
|
|
| 199 |
'Retrieval (3 datasets)': 68.03,
|
| 200 |
},
|
| 201 |
{
|
| 202 |
+
'Type': 'π’',
|
| 203 |
'Model Name': '[ConGen-WangchanBERTa](https://huggingface.co/kornwtp/ConGen-model-wangchanberta)',
|
| 204 |
'Model Size (Million Parameters)': 106,
|
| 205 |
'Embedding Dimensions': 768,
|
|
|
|
| 210 |
'Retrieval (3 datasets)': 67.66,
|
| 211 |
},
|
| 212 |
{
|
| 213 |
+
'Type': 'π’',
|
| 214 |
'Model Name': '[ConGen-PhayaThaiBERT](https://huggingface.co/kornwtp/ConGen-model-phayathaibert)',
|
| 215 |
'Model Size (Million Parameters)': 278,
|
| 216 |
'Embedding Dimensions': 768,
|
|
|
|
| 221 |
'Retrieval (3 datasets)': 68.04,
|
| 222 |
},
|
| 223 |
{
|
| 224 |
+
'Type': 'π’',
|
| 225 |
'Model Name': '[E5-Mistral-7B-Instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct)',
|
| 226 |
'Model Size (Million Parameters)': 7110,
|
| 227 |
'Embedding Dimensions': 4096,
|
|
|
|
| 232 |
'Retrieval (3 datasets)': 86.80,
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
'Type': 'π’',
|
| 236 |
'Model Name': '[gte-Qwen2-7B-Instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct)',
|
| 237 |
'Model Size (Million Parameters)': 7610,
|
| 238 |
'Embedding Dimensions': 3584,
|
|
|
|
| 243 |
'Retrieval (3 datasets)': 38.31,
|
| 244 |
},
|
| 245 |
{
|
| 246 |
+
'Type': 'π’',
|
| 247 |
'Model Name': '[GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)',
|
| 248 |
'Model Size (Million Parameters)': 7240,
|
| 249 |
'Embedding Dimensions': 4096,
|
|
|
|
| 254 |
'Retrieval (3 datasets)': 22.79,
|
| 255 |
},
|
| 256 |
{
|
| 257 |
+
'Type': 'π’',
|
| 258 |
'Model Name': '[Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)',
|
| 259 |
'Model Size (Million Parameters)': 8030,
|
| 260 |
'Embedding Dimensions': 4096,
|
|
|
|
| 265 |
'Retrieval (3 datasets)': 47.93,
|
| 266 |
},
|
| 267 |
{
|
| 268 |
+
'Type': 'π’',
|
| 269 |
'Model Name': '[Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)',
|
| 270 |
'Model Size (Million Parameters)': 8030,
|
| 271 |
'Embedding Dimensions': 4096,
|
|
|
|
| 276 |
'Retrieval (3 datasets)': 50.38,
|
| 277 |
},
|
| 278 |
{
|
| 279 |
+
'Type': 'π’',
|
| 280 |
'Model Name': '[Llama3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)',
|
| 281 |
'Model Size (Million Parameters)': 8030,
|
| 282 |
'Embedding Dimensions': 4096,
|
|
|
|
| 287 |
'Retrieval (3 datasets)': 43.64,
|
| 288 |
},
|
| 289 |
{
|
| 290 |
+
'Type': 'π’',
|
| 291 |
'Model Name': '[Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)',
|
| 292 |
'Model Size (Million Parameters)': 8030,
|
| 293 |
'Embedding Dimensions': 4096,
|
|
|
|
| 298 |
'Retrieval (3 datasets)': 43.63,
|
| 299 |
},
|
| 300 |
{
|
| 301 |
+
'Type': 'π’',
|
| 302 |
'Model Name': '[Typhoon-8B-Instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct)',
|
| 303 |
'Model Size (Million Parameters)': 8030,
|
| 304 |
'Embedding Dimensions': 4096,
|
|
|
|
| 309 |
'Retrieval (3 datasets)': 52.65,
|
| 310 |
},
|
| 311 |
{
|
| 312 |
+
'Type': 'π¦',
|
| 313 |
'Model Name': 'Cohere-embed-multilingual-v2.0',
|
| 314 |
'Model Size (Million Parameters)': "N/A",
|
| 315 |
'Embedding Dimensions': 768,
|
|
|
|
| 320 |
'Retrieval (3 datasets)': 85.23,
|
| 321 |
},
|
| 322 |
{
|
| 323 |
+
'Type': 'π¦',
|
| 324 |
'Model Name': 'Cohere-embed-multilingual-v3.0',
|
| 325 |
'Model Size (Million Parameters)': "N/A",
|
| 326 |
'Embedding Dimensions': 1024,
|
|
|
|
| 331 |
'Retrieval (3 datasets)': 91.43,
|
| 332 |
},
|
| 333 |
{
|
| 334 |
+
'Type': 'π¦',
|
| 335 |
'Model Name': 'Openai-text-embedding-3-large',
|
| 336 |
'Model Size (Million Parameters)': "N/A",
|
| 337 |
'Embedding Dimensions': 3072,
|
|
|
|
| 343 |
},
|
| 344 |
]
|
| 345 |
|
| 346 |
+
# Calculate average
|
| 347 |
+
results = [
|
| 348 |
+
{
|
| 349 |
+
**result,
|
| 350 |
+
'Average (8 datasets)': round(sum(
|
| 351 |
+
result.get(key, 0) for key in ['STS Average (1 datasets)', 'Classification (3 datasets)', 'PairClassification (1 datasets)', 'Retrieval (3 datasets)']
|
| 352 |
+
) / 4, 2),
|
| 353 |
+
}
|
| 354 |
+
for result in results
|
| 355 |
+
]
|
| 356 |
# Sort by average
|
| 357 |
results = sorted(results, key=lambda x: x['Average (8 datasets)'], reverse=True)
|
| 358 |
|