Spaces:
Sleeping
Sleeping
Add description and title again
Browse files
app.py
CHANGED
|
@@ -178,9 +178,11 @@ examples=[
|
|
| 178 |
|
| 179 |
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
| 184 |
<b>
|
| 185 |
<p style="text-align:center">
|
| 186 |
<a href='https://twitter.com/dacl_ai' target='_blank'>Twitter</a><a href='https://x.com/dacl_ai' target='_blank'>/X</a> |
|
|
@@ -214,11 +216,25 @@ with gr.Blocks() as app:
|
|
| 214 |
<li>Model: <a href='https://huggingface.co/nvidia/mit-b1' target='_blank'>SegFormer mit-b1</a>, trained on resized 512x512 images for (only) 10 epochs.</li>
|
| 215 |
<li>Label description of dacl10k dataset: "A.3. Class descriptions" in <a href='https://arxiv.org/pdf/2309.00460.pdf' target='_blank'>J. Flotzinger, P.J. Rösch, T. Braml: "dacl10k: Benchmark for Semantic Bridge Damage Segmentation".</a></li>
|
| 216 |
</ul>
|
|
|
|
|
|
|
| 217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
"""
|
| 219 |
|
| 220 |
-
|
|
|
|
|
|
|
| 221 |
|
|
|
|
|
|
|
|
|
|
| 222 |
with gr.Row():
|
| 223 |
input_img = gr.inputs.Image(type="pil", label="Original Image")
|
| 224 |
gr.Examples(examples=examples, inputs=[input_img])
|
|
@@ -226,8 +242,8 @@ with gr.Blocks() as app:
|
|
| 226 |
img = gr.outputs.Image(type="pil", label="All Masks")
|
| 227 |
transparent_img = gr.outputs.Image(type="pil", label="Transparent Image")
|
| 228 |
with gr.Row():
|
| 229 |
-
|
| 230 |
-
|
| 231 |
|
| 232 |
all_masks = gr.Gallery(visible=False)
|
| 233 |
background = gr.Image(visible=False)
|
|
|
|
| 178 |
|
| 179 |
|
| 180 |
|
| 181 |
+
title = "dacl-challenge @ WACV2024"
|
| 182 |
+
description = """
|
| 183 |
+
<p style="text-align:center">
|
| 184 |
+
<h1>dacl-challenge @ WACV2024</h1>
|
| 185 |
+
</p>
|
| 186 |
<b>
|
| 187 |
<p style="text-align:center">
|
| 188 |
<a href='https://twitter.com/dacl_ai' target='_blank'>Twitter</a><a href='https://x.com/dacl_ai' target='_blank'>/X</a> |
|
|
|
|
| 216 |
<li>Model: <a href='https://huggingface.co/nvidia/mit-b1' target='_blank'>SegFormer mit-b1</a>, trained on resized 512x512 images for (only) 10 epochs.</li>
|
| 217 |
<li>Label description of dacl10k dataset: "A.3. Class descriptions" in <a href='https://arxiv.org/pdf/2309.00460.pdf' target='_blank'>J. Flotzinger, P.J. Rösch, T. Braml: "dacl10k: Benchmark for Semantic Bridge Damage Segmentation".</a></li>
|
| 218 |
</ul>
|
| 219 |
+
<p></p>
|
| 220 |
+
|
| 221 |
|
| 222 |
+
<p>Workflow:
|
| 223 |
+
<ul>
|
| 224 |
+
<li>Upload an image or select one from "Examples". </li>
|
| 225 |
+
<li>Then click "1) Generate Masks"</li>
|
| 226 |
+
<li>Select an damage or object type in "Select Label" and choose an "Alpha Factor" for transparancy.</li>
|
| 227 |
+
<li>Then click "2) Generate Transparent Mask (with Alpha Factor)"</li>
|
| 228 |
+
</ul>
|
| 229 |
"""
|
| 230 |
|
| 231 |
+
article = "<p style='text-align: center'><a href='https://github.com/phiyodr/dacl10k-toolkit' target='_blank'>Github Repo</a></p>"
|
| 232 |
+
|
| 233 |
+
|
| 234 |
|
| 235 |
+
with gr.Blocks() as app:
|
| 236 |
+
with gr.Row():
|
| 237 |
+
gr.Markdown(description)
|
| 238 |
with gr.Row():
|
| 239 |
input_img = gr.inputs.Image(type="pil", label="Original Image")
|
| 240 |
gr.Examples(examples=examples, inputs=[input_img])
|
|
|
|
| 242 |
img = gr.outputs.Image(type="pil", label="All Masks")
|
| 243 |
transparent_img = gr.outputs.Image(type="pil", label="Transparent Image")
|
| 244 |
with gr.Row():
|
| 245 |
+
dropdown = gr.Dropdown(choices=target_list_all, label="Select Label", value="All")
|
| 246 |
+
slider = gr.Slider(minimum=0, maximum=1, value=0.4, label="Alpha Factor")
|
| 247 |
|
| 248 |
all_masks = gr.Gallery(visible=False)
|
| 249 |
background = gr.Image(visible=False)
|