Spaces:
Running
Running
update app
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModel, AutoProcessor
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import requests
|
| 6 |
+
|
| 7 |
+
model = AutoModel.from_pretrained("facebook/metaclip-2-mt5-worldwide-s16", torch_dtype=torch.bfloat16, attn_implementation="sdpa")
|
| 8 |
+
processor = AutoProcessor.from_pretrained("facebook/metaclip-2-mt5-worldwide-s16")
|
| 9 |
+
|
| 10 |
+
def postprocess_metaclip(probs, labels):
|
| 11 |
+
output = {labels[i]: probs[0][i].item() for i in range(len(labels))}
|
| 12 |
+
return output
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def metaclip_detector(image, texts):
|
| 16 |
+
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
outputs = model(**inputs)
|
| 19 |
+
logits_per_image = outputs.logits_per_image
|
| 20 |
+
probs = logits_per_image.softmax(dim=1)
|
| 21 |
+
return probs
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def infer(image, candidate_labels):
|
| 25 |
+
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
|
| 26 |
+
probs = metaclip_detector(image, candidate_labels)
|
| 27 |
+
return postprocess_metaclip(probs, labels=candidate_labels)
|
| 28 |
+
|
| 29 |
+
with gr.Blocks() as demo:
|
| 30 |
+
gr.Markdown("# MetaCLIP 2 Zero-Shot Classification")
|
| 31 |
+
gr.Markdown(
|
| 32 |
+
"Test the performance of MetaCLIP 2 on zero-shot classification in this Space :point_down:"
|
| 33 |
+
)
|
| 34 |
+
with gr.Row():
|
| 35 |
+
with gr.Column():
|
| 36 |
+
image_input = gr.Image(type="pil")
|
| 37 |
+
text_input = gr.Textbox(label="Input a list of labels (comma seperated)")
|
| 38 |
+
run_button = gr.Button("Run", visible=True)
|
| 39 |
+
with gr.Column():
|
| 40 |
+
metaclip_output = gr.Label(label="MetaCLIP 2 Output", num_top_classes=3)
|
| 41 |
+
|
| 42 |
+
# It's recommended to have local images for the examples
|
| 43 |
+
# For demonstration purposes, we will download them if they don't exist.
|
| 44 |
+
def download_image(url, filename):
|
| 45 |
+
import os
|
| 46 |
+
if not os.path.exists(filename):
|
| 47 |
+
response = requests.get(url, stream=True)
|
| 48 |
+
response.raise_for_status()
|
| 49 |
+
with open(filename, 'wb') as f:
|
| 50 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 51 |
+
f.write(chunk)
|
| 52 |
+
|
| 53 |
+
download_image("https://gradio-builds.s3.amazonaws.com/demo-files/baklava.jpg", "baklava.jpg")
|
| 54 |
+
download_image("https://gradio-builds.s3.amazonaws.com/demo-files/cat.jpg", "cat.jpg")
|
| 55 |
+
|
| 56 |
+
examples = [
|
| 57 |
+
["./baklava.jpg", "dessert on a plate, a serving of baklava, a plate and spoon"],
|
| 58 |
+
["./cat.jpg", "a cat, two cats, three cats"],
|
| 59 |
+
["./cat.jpg", "two sleeping cats, two cats playing, three cats laying down"],
|
| 60 |
+
]
|
| 61 |
+
gr.Examples(
|
| 62 |
+
examples=examples,
|
| 63 |
+
inputs=[image_input, text_input],
|
| 64 |
+
outputs=[metaclip_output],
|
| 65 |
+
fn=infer,
|
| 66 |
+
)
|
| 67 |
+
run_button.click(fn=infer, inputs=[image_input, text_input], outputs=[metaclip_output])
|
| 68 |
+
demo.launch()
|