Spaces:
Running
Running
Create utils/functions.py
Browse files- utils/functions.py +545 -0
utils/functions.py
ADDED
|
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def handle_response(response):
|
| 2 |
+
if response.status_code == 200:
|
| 3 |
+
return response.json()
|
| 4 |
+
else:
|
| 5 |
+
return {"error": f"Failed to fetch data. Status code: {response.status_code}"}
|
| 6 |
+
|
| 7 |
+
def get_income_statement(ticker, period='annual', limit=5):
|
| 8 |
+
"""
|
| 9 |
+
Fetches the income statement for a given company (ticker) over a specified period and with a limit on the number of records returned.
|
| 10 |
+
|
| 11 |
+
Parameters:
|
| 12 |
+
-----------
|
| 13 |
+
ticker : str
|
| 14 |
+
The stock symbol or CIK (Central Index Key) for the company (e.g., 'AAPL' for Apple or '0000320193' for its CIK).
|
| 15 |
+
|
| 16 |
+
period : str, optional
|
| 17 |
+
The reporting period for the income statement. Allowable values are:
|
| 18 |
+
- 'annual' : Retrieves the annual income statement (default).
|
| 19 |
+
- 'quarter' : Retrieves the quarterly income statement.
|
| 20 |
+
|
| 21 |
+
limit : int, optional
|
| 22 |
+
Limits the number of records returned. The default value is 5.
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
--------
|
| 26 |
+
dict or list of dict
|
| 27 |
+
The income statement data, including fields like date, symbol, reported currency, filing date, etc.
|
| 28 |
+
|
| 29 |
+
Example:
|
| 30 |
+
--------
|
| 31 |
+
get_income_statement('AAPL', period='annual', limit=5)
|
| 32 |
+
|
| 33 |
+
Response format:
|
| 34 |
+
----------------
|
| 35 |
+
[
|
| 36 |
+
{
|
| 37 |
+
"date": "2022-09-24",
|
| 38 |
+
"symbol": "AAPL",
|
| 39 |
+
"reportedCurrency": "USD",
|
| 40 |
+
"cik": "0000320193",
|
| 41 |
+
"fillingDate": "2022-10-28",
|
| 42 |
+
"acceptedDate": "2022-10-27 18:01:14",
|
| 43 |
+
...
|
| 44 |
+
},
|
| 45 |
+
...
|
| 46 |
+
]
|
| 47 |
+
"""
|
| 48 |
+
BASE_URL = "https://financialmodelingprep.com/api/v3"
|
| 49 |
+
params = {
|
| 50 |
+
"period": period, # Accepts 'annual' or 'quarter'
|
| 51 |
+
"limit": limit, # Limits the number of records returned
|
| 52 |
+
"apikey": os.environ['FMP_API_KEY'] # API Key for authentication
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
# Construct the full URL with query parameters
|
| 56 |
+
endpoint = f"{BASE_URL}/income-statement/{ticker}?{urlencode(params)}"
|
| 57 |
+
|
| 58 |
+
response = requests.get(endpoint)
|
| 59 |
+
return handle_response(response)
|
| 60 |
+
|
| 61 |
+
def ticker_search(query, limit=10, exchange='NYSE'):
|
| 62 |
+
"""
|
| 63 |
+
Searches for ticker symbols and exchanges for both equity securities and exchange-traded funds (ETFs)
|
| 64 |
+
by searching with the company name or ticker symbol.
|
| 65 |
+
|
| 66 |
+
Parameters:
|
| 67 |
+
-----------
|
| 68 |
+
query : str
|
| 69 |
+
The name or ticker symbol to search for (e.g., 'AA' for Alcoa).
|
| 70 |
+
|
| 71 |
+
limit : int, optional
|
| 72 |
+
Limits the number of records returned. The default is 10.
|
| 73 |
+
|
| 74 |
+
exchange : str, optional
|
| 75 |
+
Specifies the exchange to filter results by. Allowable values include:
|
| 76 |
+
- 'NYSE' : New York Stock Exchange (default).
|
| 77 |
+
- 'NASDAQ' : NASDAQ Exchange.
|
| 78 |
+
- Other exchange codes supported by the API.
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
--------
|
| 82 |
+
dict or list of dict
|
| 83 |
+
The search results, including the symbol, name, currency, stock exchange, and exchange short name.
|
| 84 |
+
|
| 85 |
+
Example:
|
| 86 |
+
--------
|
| 87 |
+
ticker_search('AA', limit=10, exchange='NASDAQ')
|
| 88 |
+
|
| 89 |
+
Response format:
|
| 90 |
+
----------------
|
| 91 |
+
[
|
| 92 |
+
{
|
| 93 |
+
"symbol": "PRAA",
|
| 94 |
+
"name": "PRA Group, Inc.",
|
| 95 |
+
"currency": "USD",
|
| 96 |
+
"stockExchange": "NasdaqGS",
|
| 97 |
+
"exchangeShortName": "NASDAQ"
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"symbol": "PAAS",
|
| 101 |
+
"name": "Pan American Silver Corp.",
|
| 102 |
+
"currency": "USD",
|
| 103 |
+
"stockExchange": "NasdaqGS",
|
| 104 |
+
"exchangeShortName": "NASDAQ"
|
| 105 |
+
},
|
| 106 |
+
...
|
| 107 |
+
]
|
| 108 |
+
"""
|
| 109 |
+
BASE_URL = "https://financialmodelingprep.com/api/v3"
|
| 110 |
+
|
| 111 |
+
params = {
|
| 112 |
+
"limit": limit,
|
| 113 |
+
"exchange": exchange,
|
| 114 |
+
"apikey": os.environ['FMP_API_KEY']
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
endpoint = f"{BASE_URL}/search?query={query}&{urlencode(params)}"
|
| 118 |
+
response = requests.get(endpoint)
|
| 119 |
+
return handle_response(response)
|
| 120 |
+
|
| 121 |
+
def company_profile(symbol):
|
| 122 |
+
"""
|
| 123 |
+
Fetches a company's profile, including key stats such as price, market capitalization, beta, and other essential details.
|
| 124 |
+
|
| 125 |
+
Parameters:
|
| 126 |
+
-----------
|
| 127 |
+
symbol : str
|
| 128 |
+
The stock ticker symbol or CIK (Central Index Key) for the company (e.g., 'AAPL' for Apple).
|
| 129 |
+
|
| 130 |
+
Returns:
|
| 131 |
+
--------
|
| 132 |
+
dict or list of dict
|
| 133 |
+
The company's profile data, including fields such as symbol, price, beta, market cap, industry, CEO, and description.
|
| 134 |
+
|
| 135 |
+
Example:
|
| 136 |
+
--------
|
| 137 |
+
company_profile('AAPL')
|
| 138 |
+
|
| 139 |
+
Response format:
|
| 140 |
+
----------------
|
| 141 |
+
[
|
| 142 |
+
{
|
| 143 |
+
"symbol": "AAPL",
|
| 144 |
+
"price": 145.30,
|
| 145 |
+
"beta": 1.25,
|
| 146 |
+
"volAvg": 98364732,
|
| 147 |
+
"mktCap": 2423446000000,
|
| 148 |
+
"lastDiv": 0.88,
|
| 149 |
+
"range": "122.25-157.33",
|
| 150 |
+
"changes": -2.00,
|
| 151 |
+
"companyName": "Apple Inc.",
|
| 152 |
+
"currency": "USD",
|
| 153 |
+
"cik": "0000320193",
|
| 154 |
+
"isin": "US0378331005",
|
| 155 |
+
"cusip": "037833100",
|
| 156 |
+
"exchange": "NasdaqGS",
|
| 157 |
+
"exchangeShortName": "NASDAQ",
|
| 158 |
+
"industry": "Consumer Electronics",
|
| 159 |
+
"website": "https://www.apple.com",
|
| 160 |
+
"description": "Apple Inc. designs, manufactures, and markets smartphones, personal computers, tablets, wearables, and accessories worldwide."
|
| 161 |
+
}
|
| 162 |
+
]
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
BASE_URL = "https://financialmodelingprep.com/api/v3"
|
| 166 |
+
|
| 167 |
+
params = {
|
| 168 |
+
'apikey': os.environ['FMP_API_KEY']
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
endpoint = f"{BASE_URL}/profile/{symbol}?{urlencode(params)}"
|
| 172 |
+
response = requests.get(endpoint)
|
| 173 |
+
return handle_response(response)
|
| 174 |
+
|
| 175 |
+
def stock_grade(symbol, limit = 500):
|
| 176 |
+
|
| 177 |
+
BASE_URL = "https://financialmodelingprep.com/api/v3"
|
| 178 |
+
|
| 179 |
+
params = {
|
| 180 |
+
'apikey':os.environ['FMP_API_KEY'],
|
| 181 |
+
'limit':limit
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
endpoint = f"{BASE_URL}/grade/{symbol}?{urlencode(params)}"
|
| 185 |
+
response = requests.get(endpoint)
|
| 186 |
+
return handle_response(response)
|
| 187 |
+
|
| 188 |
+
def current_market_cap(symbol):
|
| 189 |
+
"""
|
| 190 |
+
Fetches the current market capitalization of a given company based on its stock symbol.
|
| 191 |
+
|
| 192 |
+
Parameters:
|
| 193 |
+
-----------
|
| 194 |
+
symbol : str
|
| 195 |
+
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
--------
|
| 199 |
+
dict or list of dict
|
| 200 |
+
The market capitalization data, including fields such as symbol, date, and market cap.
|
| 201 |
+
|
| 202 |
+
Example:
|
| 203 |
+
--------
|
| 204 |
+
current_market_cap('AAPL')
|
| 205 |
+
|
| 206 |
+
Response format:
|
| 207 |
+
----------------
|
| 208 |
+
[
|
| 209 |
+
{
|
| 210 |
+
"symbol": "AAPL",
|
| 211 |
+
"date": "2023-03-02",
|
| 212 |
+
"marketCap": 2309048053309
|
| 213 |
+
}
|
| 214 |
+
]
|
| 215 |
+
"""
|
| 216 |
+
BASE_URL = "https://financialmodelingprep.com/api/v3"
|
| 217 |
+
params = {
|
| 218 |
+
'apikey': os.environ['FMP_API_KEY']
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
endpoint = f"{BASE_URL}/market-capitalization/{symbol}?{urlencode(params)}"
|
| 222 |
+
response = requests.get(endpoint)
|
| 223 |
+
return handle_response(response)
|
| 224 |
+
|
| 225 |
+
def historical_market_cap(symbol, from_date=None, to_date=None, limit=None):
|
| 226 |
+
"""
|
| 227 |
+
Fetches the historical market capitalization of a given company within a specified date range.
|
| 228 |
+
|
| 229 |
+
Parameters:
|
| 230 |
+
-----------
|
| 231 |
+
symbol : str
|
| 232 |
+
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
|
| 233 |
+
|
| 234 |
+
from_date : str, optional
|
| 235 |
+
The start date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-10-10').
|
| 236 |
+
Default is None, which fetches data from the earliest available date.
|
| 237 |
+
|
| 238 |
+
to_date : str, optional
|
| 239 |
+
The end date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-12-10').
|
| 240 |
+
Default is None, which fetches data up to the latest available date.
|
| 241 |
+
|
| 242 |
+
limit : int, optional
|
| 243 |
+
Limits the number of records returned. Default is None, which fetches all available records.
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
--------
|
| 247 |
+
dict or list of dict
|
| 248 |
+
The historical market cap data, including fields such as symbol, date, and market capitalization.
|
| 249 |
+
|
| 250 |
+
Example:
|
| 251 |
+
--------
|
| 252 |
+
historical_market_cap('AAPL', from_date='2023-10-10', to_date='2023-12-10', limit=100)
|
| 253 |
+
|
| 254 |
+
Response format:
|
| 255 |
+
----------------
|
| 256 |
+
[
|
| 257 |
+
{
|
| 258 |
+
"symbol": "AAPL",
|
| 259 |
+
"date": "2023-03-02",
|
| 260 |
+
"marketCap": 2313794623242
|
| 261 |
+
}
|
| 262 |
+
]
|
| 263 |
+
"""
|
| 264 |
+
BASE_URL = "https://financialmodelingprep.com/api/v3"
|
| 265 |
+
params = {
|
| 266 |
+
'apikey': os.environ['FMP_API_KEY'],
|
| 267 |
+
'from': from_date,
|
| 268 |
+
'to': to_date,
|
| 269 |
+
'limit': limit
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
endpoint = f"{BASE_URL}/historical-market-capitalization/{symbol}?{urlencode(params)}"
|
| 273 |
+
response = requests.get(endpoint)
|
| 274 |
+
return handle_response(response)
|
| 275 |
+
|
| 276 |
+
def analyst_recommendations(symbol):
|
| 277 |
+
"""
|
| 278 |
+
Fetches the analyst recommendations for a given company based on its stock symbol.
|
| 279 |
+
This includes buy, hold, and sell ratings.
|
| 280 |
+
|
| 281 |
+
Parameters:
|
| 282 |
+
-----------
|
| 283 |
+
symbol : str
|
| 284 |
+
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
|
| 285 |
+
|
| 286 |
+
Returns:
|
| 287 |
+
--------
|
| 288 |
+
dict or list of dict
|
| 289 |
+
The analyst recommendation data, including fields such as buy, hold, sell, and strong buy ratings.
|
| 290 |
+
|
| 291 |
+
Example:
|
| 292 |
+
--------
|
| 293 |
+
analyst_recommendations('AAPL')
|
| 294 |
+
|
| 295 |
+
Response format:
|
| 296 |
+
----------------
|
| 297 |
+
[
|
| 298 |
+
{
|
| 299 |
+
"symbol": "AAPL",
|
| 300 |
+
"date": "2023-08-01",
|
| 301 |
+
"analystRatingsBuy": 21,
|
| 302 |
+
"analystRatingsHold": 6,
|
| 303 |
+
"analystRatingsSell": 0,
|
| 304 |
+
"analystRatingsStrongSell": 0,
|
| 305 |
+
"analystRatingsStrongBuy": 11
|
| 306 |
+
}
|
| 307 |
+
]
|
| 308 |
+
"""
|
| 309 |
+
BASE_URL = "https://financialmodelingprep.com/api/v3"
|
| 310 |
+
params = {
|
| 311 |
+
'apikey': os.environ['FMP_API_KEY']
|
| 312 |
+
}
|
| 313 |
+
|
| 314 |
+
endpoint = f"{BASE_URL}/analyst-stock-recommendations/{symbol}?{urlencode(params)}"
|
| 315 |
+
response = requests.get(endpoint)
|
| 316 |
+
return handle_response(response)
|
| 317 |
+
|
| 318 |
+
def stock_peers(symbol):
|
| 319 |
+
"""
|
| 320 |
+
Fetches a list of companies that are considered peers of the given company.
|
| 321 |
+
These peers are companies that trade on the same exchange, are in the same sector,
|
| 322 |
+
and have a similar market capitalization.
|
| 323 |
+
|
| 324 |
+
Parameters:
|
| 325 |
+
-----------
|
| 326 |
+
symbol : str
|
| 327 |
+
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
|
| 328 |
+
|
| 329 |
+
Returns:
|
| 330 |
+
--------
|
| 331 |
+
dict or list of dict
|
| 332 |
+
The peers data, including a list of peer company ticker symbols.
|
| 333 |
+
|
| 334 |
+
Example:
|
| 335 |
+
--------
|
| 336 |
+
stock_peers('AAPL')
|
| 337 |
+
|
| 338 |
+
Response format:
|
| 339 |
+
----------------
|
| 340 |
+
[
|
| 341 |
+
{
|
| 342 |
+
"symbol": "AAPL",
|
| 343 |
+
"peersList": [
|
| 344 |
+
"LPL",
|
| 345 |
+
"SNEJF",
|
| 346 |
+
"PCRFY",
|
| 347 |
+
"SONO",
|
| 348 |
+
"VZIO",
|
| 349 |
+
...
|
| 350 |
+
]
|
| 351 |
+
}
|
| 352 |
+
]
|
| 353 |
+
"""
|
| 354 |
+
params = {
|
| 355 |
+
'apikey': os.environ['FMP_API_KEY'],
|
| 356 |
+
'symbol': symbol
|
| 357 |
+
}
|
| 358 |
+
|
| 359 |
+
BASE_URL = "https://financialmodelingprep.com/api/v4"
|
| 360 |
+
endpoint = f"{BASE_URL}/stock_peers?{urlencode(params)}"
|
| 361 |
+
response = requests.get(endpoint)
|
| 362 |
+
return handle_response(response)
|
| 363 |
+
|
| 364 |
+
def earnings_historical_and_upcoming(symbol, limit=100):
|
| 365 |
+
"""
|
| 366 |
+
Fetches historical and upcoming earnings announcements for a given company.
|
| 367 |
+
The response includes the date, EPS (earnings per share), estimated EPS, revenue, and estimated revenue.
|
| 368 |
+
|
| 369 |
+
Parameters:
|
| 370 |
+
-----------
|
| 371 |
+
symbol : str
|
| 372 |
+
The stock ticker symbol for the company (e.g., 'AAPL' for Apple).
|
| 373 |
+
|
| 374 |
+
limit : int, optional
|
| 375 |
+
Limits the number of records returned. The default is 100.
|
| 376 |
+
|
| 377 |
+
Returns:
|
| 378 |
+
--------
|
| 379 |
+
dict or list of dict
|
| 380 |
+
The earnings data, including fields such as date, EPS, estimated EPS, revenue, and estimated revenue.
|
| 381 |
+
|
| 382 |
+
Example:
|
| 383 |
+
--------
|
| 384 |
+
earnings_historical_and_upcoming('AAPL', limit=100)
|
| 385 |
+
|
| 386 |
+
Response format:
|
| 387 |
+
----------------
|
| 388 |
+
[
|
| 389 |
+
{
|
| 390 |
+
"date": "1998-10-14",
|
| 391 |
+
"symbol": "AAPL",
|
| 392 |
+
"eps": 0.0055,
|
| 393 |
+
"epsEstimated": 0.00393,
|
| 394 |
+
"time": "amc",
|
| 395 |
+
"revenue": 1556000000,
|
| 396 |
+
"revenueEstimated": 2450700000,
|
| 397 |
+
"updatedFromDate": "2023-12-04",
|
| 398 |
+
"fiscalDateEnding": "1998-09-25"
|
| 399 |
+
}
|
| 400 |
+
]
|
| 401 |
+
"""
|
| 402 |
+
params = {
|
| 403 |
+
'apikey': os.environ['FMP_API_KEY'],
|
| 404 |
+
'limit': limit
|
| 405 |
+
}
|
| 406 |
+
|
| 407 |
+
endpoint = f"{BASE_URL}/historical/earning_calendar/{symbol}?{urlencode(params)}"
|
| 408 |
+
response = requests.get(endpoint)
|
| 409 |
+
return handle_response(response)
|
| 410 |
+
|
| 411 |
+
def intraday_stock_prices(timeframe, symbol, from_date=None, to_date=None, extended='false'):
|
| 412 |
+
"""
|
| 413 |
+
Fetches the historical intraday stock price for a given company over a specified timeframe.
|
| 414 |
+
|
| 415 |
+
Parameters:
|
| 416 |
+
-----------
|
| 417 |
+
timeframe : str
|
| 418 |
+
The time interval for the stock data. Allowable values are:
|
| 419 |
+
- '1min' : 1 minute interval
|
| 420 |
+
- '5min' : 5 minute interval
|
| 421 |
+
- '15min' : 15 minute interval
|
| 422 |
+
- '30min' : 30 minute interval
|
| 423 |
+
- '1hour' : 1 hour interval
|
| 424 |
+
- '4hour' : 4 hour interval
|
| 425 |
+
|
| 426 |
+
symbol : str
|
| 427 |
+
The stock symbol for which to retrieve the data (e.g., 'AAPL' for Apple).
|
| 428 |
+
|
| 429 |
+
from_date : str, optional
|
| 430 |
+
The start date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-08-10').
|
| 431 |
+
Default is None, which fetches all available data up to the present.
|
| 432 |
+
|
| 433 |
+
to_date : str, optional
|
| 434 |
+
The end date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-09-10').
|
| 435 |
+
Default is None, which fetches data from the beginning up to the current date.
|
| 436 |
+
|
| 437 |
+
extended : str, optional
|
| 438 |
+
Whether to fetch extended market data (pre-market and after-hours).
|
| 439 |
+
Allowable values:
|
| 440 |
+
- 'true' : Fetch extended market data
|
| 441 |
+
- 'false' : Fetch only regular market hours data (default).
|
| 442 |
+
|
| 443 |
+
Returns:
|
| 444 |
+
--------
|
| 445 |
+
dict or list of dict
|
| 446 |
+
The historical intraday stock data, including open, high, low, close, and volume for each time interval.
|
| 447 |
+
|
| 448 |
+
Example:
|
| 449 |
+
--------
|
| 450 |
+
intraday_stock_price('5min', 'AAPL', from_date='2023-08-10', to_date='2023-09-10', extended='false')
|
| 451 |
+
|
| 452 |
+
Response format:
|
| 453 |
+
----------------
|
| 454 |
+
[
|
| 455 |
+
{
|
| 456 |
+
"date": "2023-03-02 16:00:00",
|
| 457 |
+
"open": 145.92,
|
| 458 |
+
"low": 145.72,
|
| 459 |
+
"high": 146.00,
|
| 460 |
+
"close": 145.79,
|
| 461 |
+
"volume": 1492644
|
| 462 |
+
},
|
| 463 |
+
...
|
| 464 |
+
]
|
| 465 |
+
"""
|
| 466 |
+
BASE_URL = "https://financialmodelingprep.com/api/v3"
|
| 467 |
+
params = {
|
| 468 |
+
'apikey': os.environ['FMP_API_KEY'],
|
| 469 |
+
'from': from_date,
|
| 470 |
+
'to': to_date,
|
| 471 |
+
'extended': extended
|
| 472 |
+
}
|
| 473 |
+
|
| 474 |
+
endpoint = f"{BASE_URL}/historical-chart/{timeframe}/{symbol}?{urlencode(params)}"
|
| 475 |
+
response = requests.get(endpoint)
|
| 476 |
+
return handle_response(response)
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
def daily_stock_prices(symbol, from_date=None, to_date=None, serietype='line'):
|
| 481 |
+
"""
|
| 482 |
+
Fetches the daily End-Of-Day (EOD) stock price for a given company over a specified date range.
|
| 483 |
+
|
| 484 |
+
Parameters:
|
| 485 |
+
-----------
|
| 486 |
+
symbol : str
|
| 487 |
+
The stock symbol for which to retrieve the data (e.g., 'AAPL' for Apple).
|
| 488 |
+
|
| 489 |
+
from_date : str, optional
|
| 490 |
+
The start date for the historical data in 'YYYY-MM-DD' format (e.g., '1990-10-10').
|
| 491 |
+
Default is None, which fetches the earliest available data.
|
| 492 |
+
|
| 493 |
+
to_date : str, optional
|
| 494 |
+
The end date for the historical data in 'YYYY-MM-DD' format (e.g., '2023-10-10').
|
| 495 |
+
Default is None, which fetches data up to the most recent date.
|
| 496 |
+
|
| 497 |
+
serietype : str, optional
|
| 498 |
+
The type of data series to return. Allowable values are:
|
| 499 |
+
- 'line' : Line chart data (default).
|
| 500 |
+
- 'other types' can be specified if supported by the API in the future.
|
| 501 |
+
|
| 502 |
+
Returns:
|
| 503 |
+
--------
|
| 504 |
+
dict or list of dict
|
| 505 |
+
The daily stock data, including open, high, low, close, volume, adjusted close, etc.
|
| 506 |
+
|
| 507 |
+
Example:
|
| 508 |
+
--------
|
| 509 |
+
daily_stock_price('AAPL', from_date='1990-10-10', to_date='2023-10-10', serietype='line')
|
| 510 |
+
|
| 511 |
+
Response format:
|
| 512 |
+
----------------
|
| 513 |
+
{
|
| 514 |
+
"symbol": "AAPL",
|
| 515 |
+
"historical": [
|
| 516 |
+
{
|
| 517 |
+
"date": "2023-10-06",
|
| 518 |
+
"open": 173.8,
|
| 519 |
+
"high": 176.61,
|
| 520 |
+
"low": 173.18,
|
| 521 |
+
"close": 176.53,
|
| 522 |
+
"adjClose": 176.53,
|
| 523 |
+
"volume": 21712747,
|
| 524 |
+
"unadjustedVolume": 21712747,
|
| 525 |
+
"change": 2.73,
|
| 526 |
+
"changePercent": 1.57077,
|
| 527 |
+
"vwap": 175.44,
|
| 528 |
+
"label": "October 06, 23",
|
| 529 |
+
"changeOverTime": 0.0157077
|
| 530 |
+
},
|
| 531 |
+
...
|
| 532 |
+
]
|
| 533 |
+
}
|
| 534 |
+
"""
|
| 535 |
+
BASE_URL = "https://financialmodelingprep.com/api/v3"
|
| 536 |
+
params = {
|
| 537 |
+
'apikey': os.environ['FMP_API_KEY'],
|
| 538 |
+
'from': from_date,
|
| 539 |
+
'to': to_date,
|
| 540 |
+
'serietype': serietype
|
| 541 |
+
}
|
| 542 |
+
|
| 543 |
+
endpoint = f"{BASE_URL}/historical-price-full/{symbol}?{urlencode(params)}"
|
| 544 |
+
response = requests.get(endpoint)
|
| 545 |
+
return handle_response(response)
|