Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,060 Bytes
252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c 6312a59 252fe2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import gc
from pathlib import Path
import gradio as gr
import matplotlib.cm as cm
import numpy as np
import spaces
import torch
import torch.nn.functional as F
from PIL import Image, ImageOps
from transformers import AutoImageProcessor, AutoModel
# Device configuration with memory management
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_MAP = {
"DINOv3 ViT-L/16 Satellite": "facebook/dinov3-vitl16-pretrain-sat493m",
"DINOv3 ViT-L/16 LVD (General Web)": "facebook/dinov3-vitl16-pretrain-lvd1689m",
"β οΈ DINOv3 ViT-7B/16 Satellite": "facebook/dinov3-vit7b16-pretrain-sat493m",
}
DEFAULT_NAME = list(MODEL_MAP.keys())[0]
# Global model state
processor = None
model = None
def cleanup_memory():
"""Aggressive memory cleanup for model switching"""
global processor, model
if model is not None:
del model
model = None
if processor is not None:
del processor
processor = None
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def load_model(name):
"""Load model with proper memory management and dtype handling"""
global processor, model
try:
# Clean up existing model
cleanup_memory()
model_id = MODEL_MAP[name]
# Load with auto dtype for optimal performance
processor = AutoImageProcessor.from_pretrained(model_id)
# Determine optimal dtype based on model size and hardware
if "7b" in model_id.lower() and torch.cuda.is_available():
# For 7B model, use bfloat16 if available for memory efficiency
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
else:
dtype = torch.float32
model = AutoModel.from_pretrained(
model_id,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
)
if DEVICE == "cuda" and not hasattr(model, "device_map"):
model = model.to(DEVICE)
model.eval()
# Get model info
param_count = sum(p.numel() for p in model.parameters()) / 1e9
dtype_str = str(dtype).split(".")[-1]
return f"β
Loaded: {name} | {param_count:.1f}B params | {dtype_str} | {DEVICE.upper()}"
except Exception as e:
cleanup_memory()
return f"β Failed to load {name}: {str(e)}"
# Initialize default model
load_model(DEFAULT_NAME)
@spaces.GPU(duration=60)
def _extract_grid(img):
"""Extract feature grid from image"""
with torch.inference_mode():
pv = processor(images=img, return_tensors="pt").pixel_values
if DEVICE == "cuda":
pv = pv.to(DEVICE)
out = model(pixel_values=pv)
last = out.last_hidden_state[0].to(torch.float32)
num_reg = getattr(model.config, "num_register_tokens", 0)
p = model.config.patch_size
_, _, Ht, Wt = pv.shape
gh, gw = Ht // p, Wt // p
feats = last[1 + num_reg :, :].reshape(gh, gw, -1).cpu()
return feats, gh, gw
def _overlay(orig, heat01, alpha=0.55, box=None):
"""Create heatmap overlay with improved visualization"""
H, W = orig.height, orig.width
heat = Image.fromarray((heat01 * 255).astype(np.uint8)).resize(
(W, H), resample=Image.LANCZOS
)
# Use a better colormap for satellite imagery
rgba = (cm.get_cmap("turbo")(np.asarray(heat) / 255.0) * 255).astype(np.uint8)
ov = Image.fromarray(rgba, "RGBA")
ov.putalpha(int(alpha * 255))
base = orig.copy().convert("RGBA")
out = Image.alpha_composite(base, ov)
if box:
from PIL import ImageDraw
draw = ImageDraw.Draw(out, "RGBA")
# Enhanced box visualization
draw.rectangle(box, outline=(255, 255, 255, 255), width=3)
draw.rectangle(
(box[0] - 1, box[1] - 1, box[2] + 1, box[3] + 1),
outline=(0, 0, 0, 200),
width=1,
)
return out
def prepare(img):
"""Prepare image and extract features"""
if img is None:
return None
base = ImageOps.exif_transpose(img.convert("RGB"))
feats, gh, gw = _extract_grid(base)
return {"orig": base, "feats": feats, "gh": gh, "gw": gw}
def click(state, opacity, colormap, img_value, evt: gr.SelectData):
"""Handle click events for similarity visualization"""
# If state wasn't prepared, build it now
if state is None and img_value is not None:
state = prepare(img_value)
if not state or evt.index is None:
return img_value, state, None
base, feats, gh, gw = state["orig"], state["feats"], state["gh"], state["gw"]
x, y = evt.index
px_x, px_y = base.width / gw, base.height / gh
i = min(int(x // px_x), gw - 1)
j = min(int(y // px_y), gh - 1)
d = feats.shape[-1]
grid = F.normalize(feats.reshape(-1, d), dim=1)
v = F.normalize(feats[j, i].reshape(1, d), dim=1)
sims = (grid @ v.T).reshape(gh, gw).numpy()
smin, smax = float(sims.min()), float(sims.max())
heat01 = (sims - smin) / (smax - smin + 1e-12)
# Update colormap dynamically
cm_func = cm.get_cmap(colormap.lower())
rgba = (cm_func(heat01) * 255).astype(np.uint8)
ov = Image.fromarray(rgba, "RGBA")
ov.putalpha(int(opacity * 255))
base_rgba = base.copy().convert("RGBA")
box = (int(i * px_x), int(j * px_y), int((i + 1) * px_x), int((j + 1) * px_y))
out = Image.alpha_composite(base_rgba, ov)
if box:
from PIL import ImageDraw
draw = ImageDraw.Draw(out, "RGBA")
draw.rectangle(box, outline=(255, 255, 255, 255), width=3)
draw.rectangle(
(box[0] - 1, box[1] - 1, box[2] + 1, box[3] + 1),
outline=(0, 0, 0, 200),
width=1,
)
# Stats for info panel
stats = f"""π **Similarity Statistics**
- Min: {smin:.3f}
- Max: {smax:.3f}
- Range: {smax - smin:.3f}
- Patch: ({i}, {j})
- Grid: {gw}Γ{gh}"""
return out, state, stats
def reset():
"""Reset the interface"""
return None, None, None
# Build the interface
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
neutral_hue="gray",
font=gr.themes.GoogleFont("Inter"),
),
css="""
.container {max-width: 1200px; margin: auto;}
.header {text-align: center; padding: 20px;}
.info-box {
background: rgba(0,0,0,0.03);
border-radius: 8px;
padding: 12px;
margin: 10px 0;
border-left: 4px solid #2563eb;
}
""",
) as demo:
gr.HTML(
"""
<div class="header">
<h1>π°οΈ DINOv3 Satellite Vision: Interactive Patch Similarity</h1>
<p style="font-size: 1.1em; color: #666;">
Explore how DINOv3 models trained on satellite imagery understand visual patterns
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown(
"""
### How it works
1. **Select a model** - Satellite-pretrained models are optimized for aerial/satellite imagery
2. **Upload or select an image** - Works best with satellite, aerial, or outdoor scenes
3. **Click any region** - See how similar other patches are to your selection
4. **Adjust visualization** - Fine-tune opacity and colormap for clarity
"""
)
with gr.Column(scale=2):
gr.HTML(
"""
<div class="info-box">
<b>π‘ Model Info:</b><br>
β’ <b>Satellite models</b>: Trained on 493M satellite images<br>
β’ <b>LVD model</b>: Trained on 1.7B diverse images<br>
β’ <b>7B model</b>: Massive capacity, slower but more nuanced
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Dropdown(
choices=list(MODEL_MAP.keys()),
value=DEFAULT_NAME,
label="π€ Model Selection",
info="Satellite models excel at geographic and structural patterns",
)
status = gr.Textbox(
label="π‘ Model Status",
value=f"Ready: {DEFAULT_NAME}",
interactive=False,
lines=1,
)
with gr.Row():
opacity = gr.Slider(
0.2,
0.9,
0.55,
step=0.05,
label="π¨ Heatmap Opacity",
info="Balance between image and similarity map",
)
colormap = gr.Dropdown(
choices=["Turbo", "Inferno", "Viridis", "Plasma", "Magma", "Jet"],
value="Turbo",
label="π Colormap",
info="Different maps for different contrasts",
)
info_panel = gr.Markdown(value=None, label="Statistics", visible=True)
with gr.Row():
reset_btn = gr.Button("π Reset", variant="secondary", scale=1)
clear_btn = gr.ClearButton(value="ποΈ Clear All", scale=1)
with gr.Column(scale=2):
img = gr.Image(
type="pil",
label="Interactive Canvas (Click to explore)",
interactive=True,
height=600,
show_download_button=True,
show_share_button=False,
)
state = gr.State()
# Examples focused on satellite-relevant imagery
gr.Examples(
examples=[
[_filepath.name]
for _filepath in Path.cwd().iterdir()
if _filepath.suffix.lower() in [".jpg", ".png", ".webp"]
],
inputs=img,
fn=prepare,
outputs=[state],
label="Example Images",
examples_per_page=6,
cache_examples=False,
)
# Event handlers
model_choice.change(
load_model, inputs=model_choice, outputs=status, show_progress="full"
)
img.upload(prepare, inputs=img, outputs=state, show_progress="minimal")
img.select(
click,
inputs=[state, opacity, colormap, img],
outputs=[img, state, info_panel],
show_progress="minimal",
)
reset_btn.click(reset, outputs=[img, state, info_panel], show_progress=False)
clear_btn.add([img, state, info_panel])
gr.Markdown(
"""
---
<div style="text-align: center; color: #666; font-size: 0.9em;">
<b>Performance Notes:</b> Satellite models are optimized for geographic patterns, land use classification,
and structural analysis. The 7B model provides exceptional detail but requires significant compute.
<br><br>
Built with DINOv3 | Optimized for satellite and aerial imagery analysis
</div>
"""
)
if __name__ == "__main__":
demo.launch(share=False, show_error=True)
|