Spaces:
Running
on
Zero
Running
on
Zero
rizavelioglu
commited on
Commit
·
331d5ce
1
Parent(s):
9175dc1
- remove remote-VAE support
Browse files
app.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
from diffusers import AutoencoderKL, AutoencoderDC
|
| 5 |
-
from diffusers.utils.remote_utils import remote_decode
|
| 6 |
import torchvision.transforms.v2 as transforms
|
| 7 |
from torchvision.io import read_image
|
| 8 |
from typing import Dict
|
|
@@ -42,18 +41,9 @@ class VAETester:
|
|
| 42 |
self.output_transform = transforms.Normalize(mean=[-1], std=[2])
|
| 43 |
self.vae_models = self._load_all_vaes()
|
| 44 |
|
| 45 |
-
def _get_endpoint(self, base_name: str) -> str:
|
| 46 |
-
"""Helper method to get the endpoint for a given base model name"""
|
| 47 |
-
endpoints = {
|
| 48 |
-
"sd-vae-ft-mse": "https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud",
|
| 49 |
-
"sdxl-vae": "https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud",
|
| 50 |
-
"FLUX.1": "https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud",
|
| 51 |
-
}
|
| 52 |
-
return endpoints[base_name]
|
| 53 |
-
|
| 54 |
def _load_all_vaes(self) -> Dict[str, Dict]:
|
| 55 |
-
"""Load configurations for
|
| 56 |
-
|
| 57 |
"stable-diffusion-v1-4": AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to(self.device),
|
| 58 |
"eq-vae-ema": AutoencoderKL.from_pretrained("zelaki/eq-vae-ema").to(self.device),
|
| 59 |
"eq-sdxl-vae": AutoencoderKL.from_pretrained("KBlueLeaf/EQ-SDXL-VAE").to(self.device),
|
|
@@ -66,6 +56,7 @@ class VAETester:
|
|
| 66 |
# "dc-ae-f32c32-sana-1.0": AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers").to(self.device),
|
| 67 |
"FLUX.1-Kontext": AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", subfolder="vae").to(self.device),
|
| 68 |
"FLUX.2": AutoencoderKL.from_pretrained("black-forest-labs/FLUX.2-dev", subfolder="vae").to(self.device),
|
|
|
|
| 69 |
}
|
| 70 |
# Define the desired order of models
|
| 71 |
order = [
|
|
@@ -73,66 +64,42 @@ class VAETester:
|
|
| 73 |
"eq-vae-ema",
|
| 74 |
"eq-sdxl-vae",
|
| 75 |
"sd-vae-ft-mse",
|
| 76 |
-
#"sd-vae-ft-mse (remote)",
|
| 77 |
"sdxl-vae",
|
| 78 |
-
#"sdxl-vae (remote)",
|
| 79 |
"playground-v2.5",
|
| 80 |
"stable-diffusion-3-medium",
|
| 81 |
"FLUX.1",
|
| 82 |
-
#"FLUX.1 (remote)",
|
| 83 |
"CogView4-6B",
|
| 84 |
# "dc-ae-f32c32-sana-1.0",
|
| 85 |
"FLUX.1-Kontext",
|
| 86 |
"FLUX.2",
|
|
|
|
| 87 |
]
|
| 88 |
|
| 89 |
# Construct the vae_models dictionary in the specified order
|
| 90 |
-
|
| 91 |
-
for name in order:
|
| 92 |
-
if "(remote)" not in name:
|
| 93 |
-
# Local model
|
| 94 |
-
vae_models[name] = {"type": "local", "vae": local_vaes[name]}
|
| 95 |
-
else:
|
| 96 |
-
# Remote model
|
| 97 |
-
base_name = name.replace(" (remote)", "")
|
| 98 |
-
vae_models[name] = {
|
| 99 |
-
"type": "remote",
|
| 100 |
-
"local_vae_key": base_name,
|
| 101 |
-
"endpoint": self._get_endpoint(base_name),
|
| 102 |
-
}
|
| 103 |
-
|
| 104 |
-
return vae_models
|
| 105 |
|
| 106 |
def process_image(self, img: torch.Tensor, model_config: Dict, tolerance: float):
|
| 107 |
-
"""Process image through a single VAE
|
| 108 |
-
|
|
|
|
| 109 |
original_base = self.base_transform(img).cpu()
|
| 110 |
|
| 111 |
# Start timer
|
| 112 |
start_time = time.time()
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
encoded = vae.encode(img_transformed).latent_dist.sample()
|
| 118 |
decoded = vae.decode(encoded).sample
|
| 119 |
-
elif model_config["type"] == "remote":
|
| 120 |
-
local_vae = self.vae_models[model_config["local_vae_key"]]["vae"]
|
| 121 |
-
with torch.no_grad():
|
| 122 |
-
encoded = local_vae.encode(img_transformed).latent_dist.sample()
|
| 123 |
-
decoded = remote_decode(
|
| 124 |
-
endpoint=model_config["endpoint"],
|
| 125 |
-
tensor=encoded,
|
| 126 |
-
do_scaling=False,
|
| 127 |
-
output_type="pt",
|
| 128 |
-
return_type="pt",
|
| 129 |
-
partial_postprocess=False,
|
| 130 |
-
)
|
| 131 |
|
| 132 |
# End timer
|
| 133 |
processing_time = time.time() - start_time
|
| 134 |
|
| 135 |
-
decoded_transformed = self.output_transform(decoded.squeeze(0)).cpu()
|
| 136 |
reconstructed = decoded_transformed.clip(0, 1)
|
| 137 |
diff = (original_base - reconstructed).abs()
|
| 138 |
bw_diff = (diff > tolerance).any(dim=0).float()
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from diffusers import AutoencoderKL, AutoencoderDC, AutoModel
|
|
|
|
| 5 |
import torchvision.transforms.v2 as transforms
|
| 6 |
from torchvision.io import read_image
|
| 7 |
from typing import Dict
|
|
|
|
| 41 |
self.output_transform = transforms.Normalize(mean=[-1], std=[2])
|
| 42 |
self.vae_models = self._load_all_vaes()
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def _load_all_vaes(self) -> Dict[str, Dict]:
|
| 45 |
+
"""Load configurations for all VAE models"""
|
| 46 |
+
vaes = {
|
| 47 |
"stable-diffusion-v1-4": AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to(self.device),
|
| 48 |
"eq-vae-ema": AutoencoderKL.from_pretrained("zelaki/eq-vae-ema").to(self.device),
|
| 49 |
"eq-sdxl-vae": AutoencoderKL.from_pretrained("KBlueLeaf/EQ-SDXL-VAE").to(self.device),
|
|
|
|
| 56 |
# "dc-ae-f32c32-sana-1.0": AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers").to(self.device),
|
| 57 |
"FLUX.1-Kontext": AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", subfolder="vae").to(self.device),
|
| 58 |
"FLUX.2": AutoencoderKL.from_pretrained("black-forest-labs/FLUX.2-dev", subfolder="vae").to(self.device),
|
| 59 |
+
"FLUX.2-TinyAutoEncoder": AutoModel.from_pretrained("fal/FLUX.2-Tiny-AutoEncoder", trust_remote_code=True, torch_dtype=torch.bfloat16).to(self.device),
|
| 60 |
}
|
| 61 |
# Define the desired order of models
|
| 62 |
order = [
|
|
|
|
| 64 |
"eq-vae-ema",
|
| 65 |
"eq-sdxl-vae",
|
| 66 |
"sd-vae-ft-mse",
|
|
|
|
| 67 |
"sdxl-vae",
|
|
|
|
| 68 |
"playground-v2.5",
|
| 69 |
"stable-diffusion-3-medium",
|
| 70 |
"FLUX.1",
|
|
|
|
| 71 |
"CogView4-6B",
|
| 72 |
# "dc-ae-f32c32-sana-1.0",
|
| 73 |
"FLUX.1-Kontext",
|
| 74 |
"FLUX.2",
|
| 75 |
+
"FLUX.2-TinyAutoEncoder",
|
| 76 |
]
|
| 77 |
|
| 78 |
# Construct the vae_models dictionary in the specified order
|
| 79 |
+
return {name: {"vae": vaes[name], "dtype": torch.bfloat16 if name == "FLUX.2-TinyAutoEncoder" else torch.float32} for name in order}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
def process_image(self, img: torch.Tensor, model_config: Dict, tolerance: float):
|
| 82 |
+
"""Process image through a single VAE model"""
|
| 83 |
+
dtype = model_config["dtype"]
|
| 84 |
+
img_transformed = self.input_transform(img).to(dtype).to(self.device).unsqueeze(0)
|
| 85 |
original_base = self.base_transform(img).cpu()
|
| 86 |
|
| 87 |
# Start timer
|
| 88 |
start_time = time.time()
|
| 89 |
|
| 90 |
+
vae = model_config["vae"]
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
if isinstance(vae, AutoModel):
|
| 93 |
+
encoded = vae.encode(img_transformed, return_dict=False)
|
| 94 |
+
decoded = vae.decode(encoded, return_dict=False)
|
| 95 |
+
else:
|
| 96 |
encoded = vae.encode(img_transformed).latent_dist.sample()
|
| 97 |
decoded = vae.decode(encoded).sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
# End timer
|
| 100 |
processing_time = time.time() - start_time
|
| 101 |
|
| 102 |
+
decoded_transformed = self.output_transform(decoded.squeeze(0).to(torch.float32)).cpu()
|
| 103 |
reconstructed = decoded_transformed.clip(0, 1)
|
| 104 |
diff = (original_base - reconstructed).abs()
|
| 105 |
bw_diff = (diff > tolerance).any(dim=0).float()
|