Spaces:
Running
on
Zero
Running
on
Zero
rizavelioglu
commited on
Commit
·
5558320
1
Parent(s):
08198f0
add image size dropdown
Browse files
app.py
CHANGED
|
@@ -24,17 +24,17 @@ class PadToSquare:
|
|
| 24 |
return transforms.functional.pad(img, padding, padding_mode="edge")
|
| 25 |
|
| 26 |
class VAETester:
|
| 27 |
-
def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
| 28 |
self.device = device
|
| 29 |
self.input_transform = transforms.Compose([
|
| 30 |
PadToSquare(),
|
| 31 |
-
transforms.Resize((
|
| 32 |
transforms.ToDtype(torch.float32, scale=True),
|
| 33 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
| 34 |
])
|
| 35 |
self.base_transform = transforms.Compose([
|
| 36 |
PadToSquare(),
|
| 37 |
-
transforms.Resize((
|
| 38 |
transforms.ToDtype(torch.float32, scale=True),
|
| 39 |
])
|
| 40 |
self.output_transform = transforms.Normalize(mean=[-1], std=[2])
|
|
@@ -67,8 +67,7 @@ class VAETester:
|
|
| 67 |
|
| 68 |
with torch.no_grad():
|
| 69 |
encoded = vae.encode(img_transformed).latent_dist.sample()
|
| 70 |
-
|
| 71 |
-
decoded = vae.decode(encoded_scaled / vae.config.scaling_factor).sample
|
| 72 |
|
| 73 |
decoded_transformed = self.output_transform(decoded.squeeze(0)).cpu()
|
| 74 |
reconstructed = decoded_transformed.clip(0, 1)
|
|
@@ -92,12 +91,12 @@ class VAETester:
|
|
| 92 |
results[name] = (diff_img, recon_img, score)
|
| 93 |
return results
|
| 94 |
|
| 95 |
-
# Initialize tester
|
| 96 |
-
tester = VAETester()
|
| 97 |
|
| 98 |
@spaces.GPU(duration=5)
|
| 99 |
-
def test_all_vaes(image_path: str, tolerance: float):
|
| 100 |
"""Gradio interface function to test all VAEs"""
|
|
|
|
|
|
|
| 101 |
try:
|
| 102 |
img_tensor = read_image(image_path)
|
| 103 |
results = tester.process_all_models(img_tensor, tolerance)
|
|
@@ -110,7 +109,7 @@ def test_all_vaes(image_path: str, tolerance: float):
|
|
| 110 |
diff_img, recon_img, score = results[name]
|
| 111 |
diff_images.append((diff_img, name))
|
| 112 |
recon_images.append((recon_img, name))
|
| 113 |
-
scores.append(f"{name:<25}: {score
|
| 114 |
|
| 115 |
return diff_images, recon_images, "\n".join(scores)
|
| 116 |
|
|
@@ -125,7 +124,7 @@ with gr.Blocks(title="VAE Performance Tester", css=".monospace-text {font-family
|
|
| 125 |
gr.Markdown("# VAE Comparison Tool")
|
| 126 |
gr.Markdown("""
|
| 127 |
Upload an image or select an example to compare how different VAEs reconstruct it. Here's what happens:
|
| 128 |
-
1. The image is padded to a square and resized to 512x512 pixels.
|
| 129 |
2. Each VAE encodes the image into a latent space and decodes it back.
|
| 130 |
3. The tool then generates:
|
| 131 |
- **Difference Maps**: Black-and-white images showing where the reconstruction differs from the original (white areas indicate differences above the tolerance threshold).
|
|
@@ -145,6 +144,10 @@ with gr.Blocks(title="VAE Performance Tester", css=".monospace-text {font-family
|
|
| 145 |
label="Difference Tolerance",
|
| 146 |
info="Low tolerance (e.g., 0.01): Highly sensitive, flags small deviations. High tolerance (e.g., 0.5): Less sensitive, flags only large deviations, showing fewer differences.",
|
| 147 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
submit_btn = gr.Button("Test All VAEs")
|
| 149 |
|
| 150 |
with gr.Column(scale=3):
|
|
@@ -163,7 +166,7 @@ with gr.Blocks(title="VAE Performance Tester", css=".monospace-text {font-family
|
|
| 163 |
|
| 164 |
submit_btn.click(
|
| 165 |
fn=test_all_vaes,
|
| 166 |
-
inputs=[image_input, tolerance_slider],
|
| 167 |
outputs=[diff_gallery, recon_gallery, scores_output]
|
| 168 |
)
|
| 169 |
|
|
|
|
| 24 |
return transforms.functional.pad(img, padding, padding_mode="edge")
|
| 25 |
|
| 26 |
class VAETester:
|
| 27 |
+
def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu", img_size: int = 512):
|
| 28 |
self.device = device
|
| 29 |
self.input_transform = transforms.Compose([
|
| 30 |
PadToSquare(),
|
| 31 |
+
transforms.Resize((img_size, img_size)),
|
| 32 |
transforms.ToDtype(torch.float32, scale=True),
|
| 33 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
| 34 |
])
|
| 35 |
self.base_transform = transforms.Compose([
|
| 36 |
PadToSquare(),
|
| 37 |
+
transforms.Resize((img_size, img_size)),
|
| 38 |
transforms.ToDtype(torch.float32, scale=True),
|
| 39 |
])
|
| 40 |
self.output_transform = transforms.Normalize(mean=[-1], std=[2])
|
|
|
|
| 67 |
|
| 68 |
with torch.no_grad():
|
| 69 |
encoded = vae.encode(img_transformed).latent_dist.sample()
|
| 70 |
+
decoded = vae.decode(encoded).sample
|
|
|
|
| 71 |
|
| 72 |
decoded_transformed = self.output_transform(decoded.squeeze(0)).cpu()
|
| 73 |
reconstructed = decoded_transformed.clip(0, 1)
|
|
|
|
| 91 |
results[name] = (diff_img, recon_img, score)
|
| 92 |
return results
|
| 93 |
|
|
|
|
|
|
|
| 94 |
|
| 95 |
@spaces.GPU(duration=5)
|
| 96 |
+
def test_all_vaes(image_path: str, tolerance: float, img_size: int):
|
| 97 |
"""Gradio interface function to test all VAEs"""
|
| 98 |
+
# Initialize tester
|
| 99 |
+
tester = VAETester(img_size=img_size)
|
| 100 |
try:
|
| 101 |
img_tensor = read_image(image_path)
|
| 102 |
results = tester.process_all_models(img_tensor, tolerance)
|
|
|
|
| 109 |
diff_img, recon_img, score = results[name]
|
| 110 |
diff_images.append((diff_img, name))
|
| 111 |
recon_images.append((recon_img, name))
|
| 112 |
+
scores.append(f"{name:<25}: {score:,.0f}")
|
| 113 |
|
| 114 |
return diff_images, recon_images, "\n".join(scores)
|
| 115 |
|
|
|
|
| 124 |
gr.Markdown("# VAE Comparison Tool")
|
| 125 |
gr.Markdown("""
|
| 126 |
Upload an image or select an example to compare how different VAEs reconstruct it. Here's what happens:
|
| 127 |
+
1. The image is padded to a square and resized to `512x512` pixels (can change using `Image Size` dropdown).
|
| 128 |
2. Each VAE encodes the image into a latent space and decodes it back.
|
| 129 |
3. The tool then generates:
|
| 130 |
- **Difference Maps**: Black-and-white images showing where the reconstruction differs from the original (white areas indicate differences above the tolerance threshold).
|
|
|
|
| 144 |
label="Difference Tolerance",
|
| 145 |
info="Low tolerance (e.g., 0.01): Highly sensitive, flags small deviations. High tolerance (e.g., 0.5): Less sensitive, flags only large deviations, showing fewer differences.",
|
| 146 |
)
|
| 147 |
+
img_size = gr.Dropdown(
|
| 148 |
+
label="Image Size",
|
| 149 |
+
choices=[512, 1024],
|
| 150 |
+
)
|
| 151 |
submit_btn = gr.Button("Test All VAEs")
|
| 152 |
|
| 153 |
with gr.Column(scale=3):
|
|
|
|
| 166 |
|
| 167 |
submit_btn.click(
|
| 168 |
fn=test_all_vaes,
|
| 169 |
+
inputs=[image_input, tolerance_slider, img_size],
|
| 170 |
outputs=[diff_gallery, recon_gallery, scores_output]
|
| 171 |
)
|
| 172 |
|