Samuel Stevens
commited on
Commit
·
dc20bdb
0
Parent(s):
initial commit
Browse files- .python-version +1 -0
- README.md +0 -0
- app.py +512 -0
- data.py +0 -0
- justfile +9 -0
- pyproject.toml +20 -0
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.12
|
README.md
ADDED
|
File without changes
|
app.py
ADDED
|
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os.path
|
| 2 |
+
import typing
|
| 3 |
+
import functools
|
| 4 |
+
|
| 5 |
+
import beartype
|
| 6 |
+
import einops
|
| 7 |
+
import einops.layers.torch
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import torch
|
| 10 |
+
from jaxtyping import Float, Int, UInt8, jaxtyped
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from torch import Tensor
|
| 13 |
+
|
| 14 |
+
import saev.activations
|
| 15 |
+
import saev.config
|
| 16 |
+
import saev.nn
|
| 17 |
+
import saev.visuals
|
| 18 |
+
|
| 19 |
+
from .. import training
|
| 20 |
+
from . import data
|
| 21 |
+
|
| 22 |
+
####################
|
| 23 |
+
# Global Constants #
|
| 24 |
+
####################
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
DEBUG = False
|
| 28 |
+
"""Whether we are debugging."""
|
| 29 |
+
|
| 30 |
+
max_frequency = 1e-2
|
| 31 |
+
"""Maximum frequency. Any feature that fires more than this is ignored."""
|
| 32 |
+
|
| 33 |
+
ckpt = "oebd6e6i"
|
| 34 |
+
"""Which SAE checkpoint to use."""
|
| 35 |
+
|
| 36 |
+
n_sae_latents = 3
|
| 37 |
+
"""Number of SAE latents to show."""
|
| 38 |
+
|
| 39 |
+
n_sae_examples = 4
|
| 40 |
+
"""Number of SAE examples per latent to show."""
|
| 41 |
+
|
| 42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 43 |
+
"""Hardware accelerator, if any."""
|
| 44 |
+
|
| 45 |
+
RESIZE_SIZE = 512
|
| 46 |
+
"""Resize shorter size to this size in pixels."""
|
| 47 |
+
|
| 48 |
+
CROP_SIZE = (448, 448)
|
| 49 |
+
"""Crop size in pixels."""
|
| 50 |
+
|
| 51 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
+
"""Hardware accelerator, if any."""
|
| 53 |
+
|
| 54 |
+
####################
|
| 55 |
+
# Helper Functions #
|
| 56 |
+
####################
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@beartype.beartype
|
| 60 |
+
def load_tensor(path: str) -> Tensor:
|
| 61 |
+
return torch.load(path, weights_only=True, map_location="cpu")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
##########
|
| 65 |
+
# Models #
|
| 66 |
+
##########
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@functools.cache
|
| 70 |
+
def load_vit(
|
| 71 |
+
model_cfg: modeling.Config,
|
| 72 |
+
) -> tuple[
|
| 73 |
+
activations.WrappedVisionTransformer,
|
| 74 |
+
typing.Callable,
|
| 75 |
+
float,
|
| 76 |
+
Float[Tensor, " d_vit"],
|
| 77 |
+
]:
|
| 78 |
+
vit = (
|
| 79 |
+
saev.activations.WrappedVisionTransformer(model_cfg.wrapped_cfg)
|
| 80 |
+
.to(DEVICE)
|
| 81 |
+
.eval()
|
| 82 |
+
)
|
| 83 |
+
vit_transform = saev.activations.make_img_transform(
|
| 84 |
+
model_cfg.vit_family, model_cfg.vit_ckpt
|
| 85 |
+
)
|
| 86 |
+
logger.info("Loaded ViT: %s.", model_cfg.key)
|
| 87 |
+
|
| 88 |
+
try:
|
| 89 |
+
# Normalizing constants
|
| 90 |
+
acts_dataset = saev.activations.Dataset(model_cfg.acts_cfg)
|
| 91 |
+
logger.info("Loaded dataset norms: %s.", model_cfg.key)
|
| 92 |
+
except RuntimeError as err:
|
| 93 |
+
logger.warning("Error loading ViT: %s", err)
|
| 94 |
+
return None, None, None, None
|
| 95 |
+
|
| 96 |
+
return vit, vit_transform, acts_dataset.scalar.item(), acts_dataset.act_mean
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
sae_ckpt_fpath = f"/home/stevens.994/projects/saev/checkpoints/{ckpt}/sae.pt"
|
| 100 |
+
sae = saev.nn.load(sae_ckpt_fpath)
|
| 101 |
+
sae.to(device).eval()
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
head_ckpt_fpath = "/home/stevens.994/projects/saev/checkpoints/contrib/semseg/lr_0_001__wd_0_001/model_step8000.pt"
|
| 105 |
+
head = training.load(head_ckpt_fpath)
|
| 106 |
+
head = head.to(device).eval()
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class RestOfDinoV2(torch.nn.Module):
|
| 110 |
+
def __init__(self, *, n_end_layers: int):
|
| 111 |
+
super().__init__()
|
| 112 |
+
self.vit = torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg")
|
| 113 |
+
self.n_end_layers = n_end_layers
|
| 114 |
+
|
| 115 |
+
def forward_start(self, x: Float[Tensor, "batch channels width height"]):
|
| 116 |
+
x_BPD = self.vit.prepare_tokens_with_masks(x)
|
| 117 |
+
for blk in self.vit.blocks[: -self.n_end_layers]:
|
| 118 |
+
x_BPD = blk(x_BPD)
|
| 119 |
+
|
| 120 |
+
return x_BPD
|
| 121 |
+
|
| 122 |
+
def forward_end(self, x_BPD: Float[Tensor, "batch n_patches dim"]):
|
| 123 |
+
for blk in self.vit.blocks[-self.n_end_layers :]:
|
| 124 |
+
x_BPD = blk(x_BPD)
|
| 125 |
+
|
| 126 |
+
x_BPD = self.vit.norm(x_BPD)
|
| 127 |
+
return x_BPD[:, self.vit.num_register_tokens + 1 :]
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
rest_of_vit = RestOfDinoV2(n_end_layers=1)
|
| 131 |
+
rest_of_vit = rest_of_vit.to(device)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
####################
|
| 135 |
+
# Global Variables #
|
| 136 |
+
####################
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
ckpt_data_root = (
|
| 140 |
+
f"/research/nfs_su_809/workspace/stevens.994/saev/features/{ckpt}/sort_by_patch"
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
top_img_i = load_tensor(os.path.join(ckpt_data_root, "top_img_i.pt"))
|
| 144 |
+
top_values = load_tensor(os.path.join(ckpt_data_root, "top_values.pt"))
|
| 145 |
+
sparsity = load_tensor(os.path.join(ckpt_data_root, "sparsity.pt"))
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
mask = torch.ones((sae.cfg.d_sae), dtype=bool)
|
| 149 |
+
mask = mask & (sparsity < max_frequency)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
############
|
| 153 |
+
# Datasets #
|
| 154 |
+
############
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# in1k_dataset = saev.activations.get_dataset(
|
| 158 |
+
# saev.config.ImagenetDataset(),
|
| 159 |
+
# img_transform=v2.Compose([
|
| 160 |
+
# v2.Resize(size=(512, 512)),
|
| 161 |
+
# v2.CenterCrop(size=(448, 448)),
|
| 162 |
+
# ]),
|
| 163 |
+
# )
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
# acts_dataset = saev.activations.Dataset(
|
| 167 |
+
# saev.config.DataLoad(
|
| 168 |
+
# shard_root="/local/scratch/stevens.994/cache/saev/a1f842330bb568b2fb05c15d4fa4252fb7f5204837335000d9fd420f120cd03e",
|
| 169 |
+
# scale_mean=not DEBUG,
|
| 170 |
+
# scale_norm=not DEBUG,
|
| 171 |
+
# layer=-2,
|
| 172 |
+
# )
|
| 173 |
+
# )
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# vit_dataset = saev.activations.Ade20k(
|
| 177 |
+
# saev.config.Ade20kDataset(
|
| 178 |
+
# root="/research/nfs_su_809/workspace/stevens.994/datasets/ade20k/"
|
| 179 |
+
# ),
|
| 180 |
+
# img_transform=v2.Compose([
|
| 181 |
+
# v2.Resize(size=(256, 256)),
|
| 182 |
+
# v2.CenterCrop(size=(224, 224)),
|
| 183 |
+
# v2.ToImage(),
|
| 184 |
+
# v2.ToDtype(torch.float32, scale=True),
|
| 185 |
+
# v2.Normalize(mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250]),
|
| 186 |
+
# ]),
|
| 187 |
+
# )
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
#######################
|
| 191 |
+
# Inference Functions #
|
| 192 |
+
#######################
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
@beartype.beartype
|
| 196 |
+
class Example(typing.TypedDict):
|
| 197 |
+
"""Represents an example image and its associated label.
|
| 198 |
+
|
| 199 |
+
Used to store examples of SAE latent activations for visualization.
|
| 200 |
+
"""
|
| 201 |
+
|
| 202 |
+
orig_url: str
|
| 203 |
+
"""The URL or path to access the original example image."""
|
| 204 |
+
highlighted_url: str
|
| 205 |
+
"""The URL or path to access the SAE-highlighted image."""
|
| 206 |
+
index: int
|
| 207 |
+
"""Dataset index."""
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
@beartype.beartype
|
| 211 |
+
class SaeActivation(typing.TypedDict):
|
| 212 |
+
"""Represents the activation pattern of a single SAE latent across patches.
|
| 213 |
+
|
| 214 |
+
This captures how strongly a particular SAE latent fires on different patches of an input image.
|
| 215 |
+
"""
|
| 216 |
+
|
| 217 |
+
latent: int
|
| 218 |
+
"""The index of the SAE latent being measured."""
|
| 219 |
+
|
| 220 |
+
highlighted_url: str
|
| 221 |
+
"""The image with the colormaps applied."""
|
| 222 |
+
|
| 223 |
+
activations: list[float]
|
| 224 |
+
"""The activation values of this latent across different patches. Each value represents how strongly this latent fired on a particular patch."""
|
| 225 |
+
|
| 226 |
+
examples: list[Example]
|
| 227 |
+
"""Top examples for this latent."""
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
@beartype.beartype
|
| 231 |
+
def get_image(image_i: int) -> tuple[str, str, int]:
|
| 232 |
+
img_sized, labels_sized = data.get_sample(image_i)
|
| 233 |
+
|
| 234 |
+
return data.pil_to_base64(img_sized), data.pil_to_base64(labels_sized), image_i
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@beartype.beartype
|
| 238 |
+
@torch.inference_mode
|
| 239 |
+
def get_sae_activations(image_i: int, patches: list[int]) -> list[SaeActivation]:
|
| 240 |
+
"""
|
| 241 |
+
Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
|
| 242 |
+
"""
|
| 243 |
+
if not patches:
|
| 244 |
+
return []
|
| 245 |
+
|
| 246 |
+
vit, vit_transform, scalar, mean = load_vit(model_cfg)
|
| 247 |
+
if vit is None:
|
| 248 |
+
logger.warning("Skipping ViT '%s'", model_name)
|
| 249 |
+
return []
|
| 250 |
+
sae = load_sae(model_cfg)
|
| 251 |
+
|
| 252 |
+
mean = mean.to(DEVICE)
|
| 253 |
+
x = vit_transform(img_p)[None, ...].to(DEVICE)
|
| 254 |
+
|
| 255 |
+
_, vit_acts_BLPD = vit(x)
|
| 256 |
+
vit_acts_PD = (vit_acts_BLPD[0, 0, 1:].to(DEVICE).clamp(-1e-5, 1e5) - mean) / scalar
|
| 257 |
+
|
| 258 |
+
_, f_x_PS, _ = sae(vit_acts_PD)
|
| 259 |
+
# Ignore [CLS] token and get just the requested latents.
|
| 260 |
+
acts_SP = einops.rearrange(f_x_PS, "patches n_latents -> n_latents patches")
|
| 261 |
+
logger.info("Got SAE activations for '%s'.", model_name)
|
| 262 |
+
top_img_i, top_values = load_tensors(model_cfg)
|
| 263 |
+
logger.info("Loaded top SAE activations for '%s'.", model_name)
|
| 264 |
+
|
| 265 |
+
breakpoint()
|
| 266 |
+
|
| 267 |
+
vit_acts_MD = torch.stack([
|
| 268 |
+
acts_dataset[image_i * acts_dataset.metadata.n_patches_per_img + i]["act"]
|
| 269 |
+
for i in patches
|
| 270 |
+
]).to(device)
|
| 271 |
+
|
| 272 |
+
_, f_x_MS, _ = sae(vit_acts_MD)
|
| 273 |
+
f_x_S = f_x_MS.sum(axis=0)
|
| 274 |
+
|
| 275 |
+
latents = torch.argsort(f_x_S, descending=True).cpu()
|
| 276 |
+
latents = latents[mask[latents]][:n_sae_latents].tolist()
|
| 277 |
+
|
| 278 |
+
images = []
|
| 279 |
+
for latent in latents:
|
| 280 |
+
elems, seen_i_im = [], set()
|
| 281 |
+
for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]):
|
| 282 |
+
if i_im in seen_i_im:
|
| 283 |
+
continue
|
| 284 |
+
|
| 285 |
+
example = in1k_dataset[i_im]
|
| 286 |
+
elems.append(
|
| 287 |
+
saev.visuals.GridElement(example["image"], example["label"], values_p)
|
| 288 |
+
)
|
| 289 |
+
seen_i_im.add(i_im)
|
| 290 |
+
|
| 291 |
+
# How to scale values.
|
| 292 |
+
upper = None
|
| 293 |
+
if top_values[latent].numel() > 0:
|
| 294 |
+
upper = top_values[latent].max().item()
|
| 295 |
+
|
| 296 |
+
latent_images = [make_img(elem, upper=upper) for elem in elems[:n_sae_examples]]
|
| 297 |
+
|
| 298 |
+
while len(latent_images) < n_sae_examples:
|
| 299 |
+
latent_images += [None]
|
| 300 |
+
|
| 301 |
+
images.extend(latent_images)
|
| 302 |
+
|
| 303 |
+
return images + latents
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
@torch.inference_mode
|
| 307 |
+
def get_true_labels(image_i: int) -> Image.Image:
|
| 308 |
+
seg = human_dataset[image_i]["segmentation"]
|
| 309 |
+
image = seg_to_img(seg)
|
| 310 |
+
return image
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
@torch.inference_mode
|
| 314 |
+
def get_pred_labels(i: int) -> list[Image.Image | list[int]]:
|
| 315 |
+
sample = vit_dataset[i]
|
| 316 |
+
x = sample["image"][None, ...].to(device)
|
| 317 |
+
x_BPD = rest_of_vit.forward_start(x)
|
| 318 |
+
x_BPD = rest_of_vit.forward_end(x_BPD)
|
| 319 |
+
|
| 320 |
+
x_WHD = einops.rearrange(x_BPD, "() (w h) dim -> w h dim", w=16, h=16)
|
| 321 |
+
|
| 322 |
+
logits_WHC = head(x_WHD)
|
| 323 |
+
|
| 324 |
+
pred_WH = logits_WHC.argmax(axis=-1)
|
| 325 |
+
preds = einops.rearrange(pred_WH, "w h -> (w h)").tolist()
|
| 326 |
+
return [seg_to_img(upsample(pred_WH)), preds]
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
@beartype.beartype
|
| 330 |
+
def unscaled(x: float, max_obs: float) -> float:
|
| 331 |
+
"""Scale from [-10, 10] to [10 * -max_obs, 10 * max_obs]."""
|
| 332 |
+
return map_range(x, (-10.0, 10.0), (-10.0 * max_obs, 10.0 * max_obs))
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
@beartype.beartype
|
| 336 |
+
def map_range(
|
| 337 |
+
x: float,
|
| 338 |
+
domain: tuple[float | int, float | int],
|
| 339 |
+
range: tuple[float | int, float | int],
|
| 340 |
+
):
|
| 341 |
+
a, b = domain
|
| 342 |
+
c, d = range
|
| 343 |
+
if not (a <= x <= b):
|
| 344 |
+
raise ValueError(f"x={x:.3f} must be in {[a, b]}.")
|
| 345 |
+
return c + (x - a) * (d - c) / (b - a)
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
@torch.inference_mode
|
| 349 |
+
def get_modified_labels(
|
| 350 |
+
i: int,
|
| 351 |
+
latent1: int,
|
| 352 |
+
latent2: int,
|
| 353 |
+
latent3: int,
|
| 354 |
+
value1: float,
|
| 355 |
+
value2: float,
|
| 356 |
+
value3: float,
|
| 357 |
+
) -> list[Image.Image | list[int]]:
|
| 358 |
+
sample = vit_dataset[i]
|
| 359 |
+
x = sample["image"][None, ...].to(device)
|
| 360 |
+
x_BPD = rest_of_vit.forward_start(x)
|
| 361 |
+
|
| 362 |
+
x_hat_BPD, f_x_BPS, _ = sae(x_BPD)
|
| 363 |
+
|
| 364 |
+
err_BPD = x_BPD - x_hat_BPD
|
| 365 |
+
|
| 366 |
+
values = torch.tensor(
|
| 367 |
+
[
|
| 368 |
+
unscaled(float(value), top_values[latent].max().item())
|
| 369 |
+
for value, latent in [
|
| 370 |
+
(value1, latent1),
|
| 371 |
+
(value2, latent2),
|
| 372 |
+
(value3, latent3),
|
| 373 |
+
]
|
| 374 |
+
],
|
| 375 |
+
device=device,
|
| 376 |
+
)
|
| 377 |
+
f_x_BPS[..., torch.tensor([latent1, latent2, latent3], device=device)] = values
|
| 378 |
+
|
| 379 |
+
# Reproduce the SAE forward pass after f_x
|
| 380 |
+
modified_x_hat_BPD = (
|
| 381 |
+
einops.einsum(
|
| 382 |
+
f_x_BPS,
|
| 383 |
+
sae.W_dec,
|
| 384 |
+
"batch patches d_sae, d_sae d_vit -> batch patches d_vit",
|
| 385 |
+
)
|
| 386 |
+
+ sae.b_dec
|
| 387 |
+
)
|
| 388 |
+
modified_BPD = err_BPD + modified_x_hat_BPD
|
| 389 |
+
|
| 390 |
+
modified_BPD = rest_of_vit.forward_end(modified_BPD)
|
| 391 |
+
|
| 392 |
+
logits_BPC = head(modified_BPD)
|
| 393 |
+
pred_P = logits_BPC[0].argmax(axis=-1)
|
| 394 |
+
pred_WH = einops.rearrange(pred_P, "(w h) -> w h", w=16, h=16)
|
| 395 |
+
return seg_to_img(upsample(pred_WH)), pred_P.tolist()
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
@jaxtyped(typechecker=beartype.beartype)
|
| 399 |
+
@torch.inference_mode
|
| 400 |
+
def upsample(
|
| 401 |
+
x_WH: Int[Tensor, "width_ps height_ps"],
|
| 402 |
+
) -> UInt8[Tensor, "width_px height_px"]:
|
| 403 |
+
return (
|
| 404 |
+
torch.nn.functional.interpolate(
|
| 405 |
+
x_WH.view((1, 1, 16, 16)).float(),
|
| 406 |
+
scale_factor=28,
|
| 407 |
+
)
|
| 408 |
+
.view((448, 448))
|
| 409 |
+
.type(torch.uint8)
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
@beartype.beartype
|
| 414 |
+
def make_img(
|
| 415 |
+
elem: saev.visuals.GridElement, *, upper: float | None = None
|
| 416 |
+
) -> Image.Image:
|
| 417 |
+
# Resize to 256x256 and crop to 224x224
|
| 418 |
+
resize_size_px = (512, 512)
|
| 419 |
+
resize_w_px, resize_h_px = resize_size_px
|
| 420 |
+
crop_size_px = (448, 448)
|
| 421 |
+
crop_w_px, crop_h_px = crop_size_px
|
| 422 |
+
crop_coords_px = (
|
| 423 |
+
(resize_w_px - crop_w_px) // 2,
|
| 424 |
+
(resize_h_px - crop_h_px) // 2,
|
| 425 |
+
(resize_w_px + crop_w_px) // 2,
|
| 426 |
+
(resize_h_px + crop_h_px) // 2,
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
img = elem.img.resize(resize_size_px).crop(crop_coords_px)
|
| 430 |
+
img = saev.imaging.add_highlights(
|
| 431 |
+
img, elem.patches.numpy(), upper=upper, opacity=0.5
|
| 432 |
+
)
|
| 433 |
+
return img
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
with gr.Blocks() as demo:
|
| 437 |
+
image_number = gr.Number(label="Validation Example")
|
| 438 |
+
|
| 439 |
+
input_image_base64 = gr.Text(label="Image in Base64")
|
| 440 |
+
true_labels_base64 = gr.Text(label="Labels in Base64")
|
| 441 |
+
|
| 442 |
+
get_input_image_btn = gr.Button(value="Get Input Image")
|
| 443 |
+
get_input_image_btn.click(
|
| 444 |
+
get_image,
|
| 445 |
+
inputs=[image_number],
|
| 446 |
+
outputs=[input_image_base64, true_labels_base64, image_number],
|
| 447 |
+
api_name="get-image",
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
# input_image = gr.Image(
|
| 451 |
+
# label="Input Image",
|
| 452 |
+
# sources=["upload", "clipboard"],
|
| 453 |
+
# type="pil",
|
| 454 |
+
# interactive=True,
|
| 455 |
+
# )
|
| 456 |
+
# patch_numbers = gr.CheckboxGroup(label="Image Patch", choices=list(range(256)))
|
| 457 |
+
# top_latent_numbers = gr.CheckboxGroup(label="Top Latents")
|
| 458 |
+
# top_latent_numbers = [
|
| 459 |
+
# gr.Number(label="Top Latents #{j+1}") for j in range(n_sae_latents)
|
| 460 |
+
# ]
|
| 461 |
+
# sae_example_images = [
|
| 462 |
+
# gr.Image(label=f"Latent #{j}, Example #{i + 1}", format="png")
|
| 463 |
+
# for i in range(n_sae_examples)
|
| 464 |
+
# for j in range(n_sae_latents)
|
| 465 |
+
# ]
|
| 466 |
+
|
| 467 |
+
patches_json = gr.JSON(label="Patches", value=[])
|
| 468 |
+
activations_json = gr.JSON(label="Activations", value=[])
|
| 469 |
+
|
| 470 |
+
get_sae_activations_btn = gr.Button(value="Get SAE Activations")
|
| 471 |
+
get_sae_activations_btn.click(
|
| 472 |
+
get_sae_activations,
|
| 473 |
+
inputs=[image_number, patches_json],
|
| 474 |
+
outputs=[activations_json],
|
| 475 |
+
api_name="get-sae-examples",
|
| 476 |
+
)
|
| 477 |
+
# semseg_image = gr.Image(label="Semantic Segmentaions", format="png")
|
| 478 |
+
# semseg_colors = gr.CheckboxGroup(
|
| 479 |
+
# label="Sem Seg Colors", choices=list(range(1, 151))
|
| 480 |
+
# )
|
| 481 |
+
|
| 482 |
+
# get_pred_labels_btn = gr.Button(value="Get Pred. Labels")
|
| 483 |
+
# get_pred_labels_btn.click(
|
| 484 |
+
# get_pred_labels,
|
| 485 |
+
# inputs=[image_number],
|
| 486 |
+
# outputs=[semseg_image, semseg_colors],
|
| 487 |
+
# api_name="get-pred-labels",
|
| 488 |
+
# )
|
| 489 |
+
|
| 490 |
+
# get_true_labels_btn = gr.Button(value="Get True Label")
|
| 491 |
+
# get_true_labels_btn.click(
|
| 492 |
+
# get_true_labels,
|
| 493 |
+
# inputs=[image_number],
|
| 494 |
+
# outputs=semseg_image,
|
| 495 |
+
# api_name="get-true-labels",
|
| 496 |
+
# )
|
| 497 |
+
|
| 498 |
+
# latent_numbers = [gr.Number(label=f"Latent {i + 1}") for i in range(3)]
|
| 499 |
+
# value_sliders = [
|
| 500 |
+
# gr.Slider(label=f"Value {i + 1}", minimum=-10, maximum=10) for i in range(3)
|
| 501 |
+
# ]
|
| 502 |
+
|
| 503 |
+
# get_modified_labels_btn = gr.Button(value="Get Modified Label")
|
| 504 |
+
# get_modified_labels_btn.click(
|
| 505 |
+
# get_modified_labels,
|
| 506 |
+
# inputs=[image_number] + latent_numbers + value_sliders,
|
| 507 |
+
# outputs=[semseg_image, semseg_colors],
|
| 508 |
+
# api_name="get-modified-labels",
|
| 509 |
+
# )
|
| 510 |
+
|
| 511 |
+
if __name__ == "__main__":
|
| 512 |
+
demo.launch()
|
data.py
ADDED
|
File without changes
|
justfile
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
build: lint
|
| 2 |
+
uv pip compile pyproject.toml > requirements.txt
|
| 3 |
+
|
| 4 |
+
lint: fmt
|
| 5 |
+
git ls-files "*.py" --cached --others --exclude-standard | xargs uv run ruff check
|
| 6 |
+
|
| 7 |
+
fmt:
|
| 8 |
+
git ls-files "*.py" --cached --others --exclude-standard | xargs uv run isort
|
| 9 |
+
git ls-files "*.py" --cached --others --exclude-standard | xargs uv run ruff format --preview
|
pyproject.toml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "saev-semantic-segmentation"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Gradio app space for semantic segmentation with SAEs"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.12"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"beartype>=0.19.0",
|
| 9 |
+
"einops>=0.8.0",
|
| 10 |
+
"gradio>=5.3.0",
|
| 11 |
+
"numpy>=2.2.2",
|
| 12 |
+
"torch>=2.6.0",
|
| 13 |
+
"torchvision>=0.21.0",
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
[tool.ruff.lint]
|
| 17 |
+
ignore = ["F722"]
|
| 18 |
+
|
| 19 |
+
[tool.uv.sources]
|
| 20 |
+
saev = { git = "https://github.com/samuelstevens/saev" }
|