Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,39 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import CLIPProcessor, CLIPModel
|
| 3 |
from PIL import Image
|
|
|
|
| 4 |
|
| 5 |
# Load the model and processor
|
| 6 |
model = CLIPModel.from_pretrained("geolocal/StreetCLIP")
|
| 7 |
processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP")
|
| 8 |
|
| 9 |
def classify_image(image):
|
| 10 |
-
#
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Perform the inference
|
| 13 |
outputs = model(**inputs)
|
|
|
|
| 14 |
# Postprocess the outputs
|
| 15 |
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 16 |
probs = logits_per_image.softmax(dim=1) # we can use softmax to get probabilities
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Define Gradio interface
|
| 20 |
iface = gr.Interface(
|
| 21 |
fn=classify_image,
|
| 22 |
inputs=gr.Image(type="pil"),
|
| 23 |
-
outputs="
|
| 24 |
title="Geolocal StreetCLIP Classification",
|
| 25 |
description="Upload an image to classify using Geolocal StreetCLIP"
|
| 26 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import CLIPProcessor, CLIPModel
|
| 3 |
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
|
| 6 |
# Load the model and processor
|
| 7 |
model = CLIPModel.from_pretrained("geolocal/StreetCLIP")
|
| 8 |
processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP")
|
| 9 |
|
| 10 |
def classify_image(image):
|
| 11 |
+
# Example labels for classification
|
| 12 |
+
labels = ["a photo of a cat", "a photo of a dog", "a photo of a car", "a photo of a tree"]
|
| 13 |
+
|
| 14 |
+
# Preprocess the image and text
|
| 15 |
+
inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)
|
| 16 |
+
|
| 17 |
# Perform the inference
|
| 18 |
outputs = model(**inputs)
|
| 19 |
+
|
| 20 |
# Postprocess the outputs
|
| 21 |
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 22 |
probs = logits_per_image.softmax(dim=1) # we can use softmax to get probabilities
|
| 23 |
+
|
| 24 |
+
# Convert the probabilities to a list
|
| 25 |
+
probs_list = probs.tolist()[0]
|
| 26 |
+
|
| 27 |
+
# Create a dictionary of labels and probabilities
|
| 28 |
+
result = {label: prob for label, prob in zip(labels, probs_list)}
|
| 29 |
+
|
| 30 |
+
return result
|
| 31 |
|
| 32 |
# Define Gradio interface
|
| 33 |
iface = gr.Interface(
|
| 34 |
fn=classify_image,
|
| 35 |
inputs=gr.Image(type="pil"),
|
| 36 |
+
outputs="label",
|
| 37 |
title="Geolocal StreetCLIP Classification",
|
| 38 |
description="Upload an image to classify using Geolocal StreetCLIP"
|
| 39 |
)
|