Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,12 +2,10 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
from peft import PeftModel
|
| 5 |
-
|
| 6 |
# !python -c "import torch; assert torch.cuda.get_device_capability()[0] >= 8, 'Hardware not supported for Flash Attention'"
|
| 7 |
import json
|
| 8 |
import torch
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer, StoppingCriteria, StoppingCriteriaList, GenerationConfig
|
| 10 |
-
# from google.colab import userdata
|
| 11 |
import os
|
| 12 |
|
| 13 |
#sft_model = "somosnlp/gemma-FULL-RAC-Colombia_v2"
|
|
@@ -16,7 +14,6 @@ import os
|
|
| 16 |
sft_model = "somosnlp/RecetasDeLaAbuela_gemma-2b-it-bnb-4bit"
|
| 17 |
base_model_name = "unsloth/gemma-2b-it-bnb-4bit"
|
| 18 |
|
| 19 |
-
|
| 20 |
bnb_config = BitsAndBytesConfig(
|
| 21 |
load_in_4bit=True,
|
| 22 |
bnb_4bit_quant_type="nf4",
|
|
@@ -42,7 +39,6 @@ model.save_pretrained(".")
|
|
| 42 |
#model.to('cuda')
|
| 43 |
tokenizer.save_pretrained(".")
|
| 44 |
|
| 45 |
-
|
| 46 |
class ListOfTokensStoppingCriteria(StoppingCriteria):
|
| 47 |
"""
|
| 48 |
Clase para definir un criterio de parada basado en una lista de tokens específicos.
|
|
@@ -71,22 +67,9 @@ stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens)
|
|
| 71 |
stopping_criteria_list = StoppingCriteriaList([stopping_criteria])
|
| 72 |
|
| 73 |
def generate_text(prompt, max_length=2100):
|
| 74 |
-
# prompt="""What were the main contributions of Eratosthenes to the development of mathematics in ancient Greece?"""
|
| 75 |
prompt=prompt.replace("\n", "").replace("¿","").replace("?","")
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
input_text = f'''<bos><start_of_turn>system
|
| 79 |
-
You are a helpful AI assistant.
|
| 80 |
-
Responde en formato json.
|
| 81 |
-
Eres un experto cocinero de la cocina hispanoamericana.<end_of_turn>
|
| 82 |
-
<start_of_turn>user
|
| 83 |
-
¿{prompt}?<end_of_turn>
|
| 84 |
-
<start_of_turn>model
|
| 85 |
-
'''
|
| 86 |
-
|
| 87 |
-
inputs = tokenizer.encode(input_text,
|
| 88 |
-
return_tensors="pt",
|
| 89 |
-
add_special_tokens=False).to("cuda:0")
|
| 90 |
max_new_tokens=max_length
|
| 91 |
generation_config = GenerationConfig(
|
| 92 |
max_new_tokens=max_new_tokens,
|
|
@@ -96,26 +79,15 @@ Eres un experto cocinero de la cocina hispanoamericana.<end_of_turn>
|
|
| 96 |
repetition_penalty=1.04, #1.1
|
| 97 |
do_sample=True,
|
| 98 |
)
|
| 99 |
-
outputs = model.generate(generation_config=generation_config,
|
| 100 |
-
input_ids=inputs,
|
| 101 |
-
stopping_criteria=stopping_criteria_list,)
|
| 102 |
return tokenizer.decode(outputs[0], skip_special_tokens=False) #True
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
def mostrar_respuesta(pregunta):
|
| 107 |
try:
|
| 108 |
res= generate_text(pregunta, max_length=500)
|
| 109 |
-
|
| 110 |
-
fin_json = res.rfind('}') + 1
|
| 111 |
-
json_str = res[inicio_json:fin_json]
|
| 112 |
-
json_obj = json.loads(json_str)
|
| 113 |
-
# print(json_obj)
|
| 114 |
-
return json_obj["Respuesta"]
|
| 115 |
except Exception as e:
|
| 116 |
-
|
| 117 |
-
json_obj['Respuesta']=str(e)
|
| 118 |
-
return json_obj
|
| 119 |
|
| 120 |
# Ejemplos de preguntas
|
| 121 |
ejemplos = [
|
|
@@ -127,12 +99,10 @@ ejemplos = [
|
|
| 127 |
iface = gr.Interface(
|
| 128 |
fn=mostrar_respuesta,
|
| 129 |
inputs=gr.Textbox(label="Pregunta"),
|
| 130 |
-
outputs=[
|
| 131 |
-
gr.Textbox(label="Respuesta", lines=2),
|
| 132 |
-
],
|
| 133 |
title="Recetas de la Abuel@",
|
| 134 |
description="Introduce tu pregunta sobre recetas de cocina.",
|
| 135 |
examples=ejemplos,
|
| 136 |
)
|
| 137 |
|
| 138 |
-
iface.queue(max_size=14).launch() # share=True,debug=True
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
from peft import PeftModel
|
|
|
|
| 5 |
# !python -c "import torch; assert torch.cuda.get_device_capability()[0] >= 8, 'Hardware not supported for Flash Attention'"
|
| 6 |
import json
|
| 7 |
import torch
|
| 8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer, StoppingCriteria, StoppingCriteriaList, GenerationConfig
|
|
|
|
| 9 |
import os
|
| 10 |
|
| 11 |
#sft_model = "somosnlp/gemma-FULL-RAC-Colombia_v2"
|
|
|
|
| 14 |
sft_model = "somosnlp/RecetasDeLaAbuela_gemma-2b-it-bnb-4bit"
|
| 15 |
base_model_name = "unsloth/gemma-2b-it-bnb-4bit"
|
| 16 |
|
|
|
|
| 17 |
bnb_config = BitsAndBytesConfig(
|
| 18 |
load_in_4bit=True,
|
| 19 |
bnb_4bit_quant_type="nf4",
|
|
|
|
| 39 |
#model.to('cuda')
|
| 40 |
tokenizer.save_pretrained(".")
|
| 41 |
|
|
|
|
| 42 |
class ListOfTokensStoppingCriteria(StoppingCriteria):
|
| 43 |
"""
|
| 44 |
Clase para definir un criterio de parada basado en una lista de tokens específicos.
|
|
|
|
| 67 |
stopping_criteria_list = StoppingCriteriaList([stopping_criteria])
|
| 68 |
|
| 69 |
def generate_text(prompt, max_length=2100):
|
|
|
|
| 70 |
prompt=prompt.replace("\n", "").replace("¿","").replace("?","")
|
| 71 |
+
input_text = f'''<bos><start_of_turn>system You are a helpful AI assistant.Eres un experto cocinero de la cocina hispanoamericana.<end_of_turn><start_of_turn>user ¿{prompt}?<end_of_turn><start_of_turn>model'''
|
| 72 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt", add_special_tokens=False).to("cuda:0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
max_new_tokens=max_length
|
| 74 |
generation_config = GenerationConfig(
|
| 75 |
max_new_tokens=max_new_tokens,
|
|
|
|
| 79 |
repetition_penalty=1.04, #1.1
|
| 80 |
do_sample=True,
|
| 81 |
)
|
| 82 |
+
outputs = model.generate(generation_config=generation_config, input_ids=inputs, stopping_criteria=stopping_criteria_list,)
|
|
|
|
|
|
|
| 83 |
return tokenizer.decode(outputs[0], skip_special_tokens=False) #True
|
| 84 |
|
|
|
|
|
|
|
| 85 |
def mostrar_respuesta(pregunta):
|
| 86 |
try:
|
| 87 |
res= generate_text(pregunta, max_length=500)
|
| 88 |
+
return str(res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
except Exception as e:
|
| 90 |
+
return str(e)
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# Ejemplos de preguntas
|
| 93 |
ejemplos = [
|
|
|
|
| 99 |
iface = gr.Interface(
|
| 100 |
fn=mostrar_respuesta,
|
| 101 |
inputs=gr.Textbox(label="Pregunta"),
|
| 102 |
+
outputs=[gr.Textbox(label="Respuesta", lines=2),],
|
|
|
|
|
|
|
| 103 |
title="Recetas de la Abuel@",
|
| 104 |
description="Introduce tu pregunta sobre recetas de cocina.",
|
| 105 |
examples=ejemplos,
|
| 106 |
)
|
| 107 |
|
| 108 |
+
iface.queue(max_size=14).launch() # share=True,debug=True
|