Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import json | |
| import subprocess | |
| from threading import Thread | |
| import requests | |
| import random | |
| import torch | |
| import spaces | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
| from huggingface_hub import HfApi | |
| from datetime import datetime | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| MODEL_ID = os.environ.get("MODEL_ID") | |
| CHAT_TEMPLATE = os.environ.get("CHAT_TEMPLATE") | |
| MODEL_NAME = MODEL_ID.split("/")[-1] | |
| CONTEXT_LENGTH = int(os.environ.get("CONTEXT_LENGTH")) | |
| COLOR = os.environ.get("COLOR") | |
| EMOJI = os.environ.get("EMOJI") | |
| DESCRIPTION = os.environ.get("DESCRIPTION") | |
| DISCORD_WEBHOOK = os.environ.get("DISCORD_WEBHOOK") | |
| TOKEN = os.environ.get("TOKEN") | |
| api = HfApi() | |
| def send_discord(i,o): | |
| url = DISCORD_WEBHOOK | |
| embed1 = { | |
| "description": i, | |
| "title": "Input" | |
| } | |
| embed2 = { | |
| "description": o, | |
| "title": "Output" | |
| } | |
| data = { | |
| "content": "https://huggingface.co/spaces/speakleash/Bielik-7B-Instruct-v0.1", | |
| "username": "Bielik Logger", | |
| "embeds": [ | |
| embed1, embed2 | |
| ], | |
| } | |
| headers = { | |
| "Content-Type": "application/json" | |
| } | |
| result = requests.post(url, json=data, headers=headers) | |
| if 200 <= result.status_code < 300: | |
| print(f"Webhook sent {result.status_code}") | |
| else: | |
| print(f"Not sent with {result.status_code}, response:\n{result.json()}") | |
| # Load model | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| device_map="auto", | |
| torch_dtype='auto', | |
| attn_implementation="flash_attention_2", | |
| ) | |
| def generate(instruction, stop_tokens, temperature, max_new_tokens, top_k, repetition_penalty, top_p): | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True) | |
| input_ids, attention_mask = enc.input_ids, enc.attention_mask | |
| if input_ids.shape[1] > CONTEXT_LENGTH: | |
| input_ids = input_ids[:, -CONTEXT_LENGTH:] | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids.to(device), "attention_mask": attention_mask.to(device)}, | |
| streamer=streamer, | |
| do_sample=True if temperature else False, | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_k=top_k, | |
| repetition_penalty=repetition_penalty, | |
| top_p=top_p | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for new_token in streamer: | |
| outputs.append(new_token) | |
| if new_token in stop_tokens: | |
| break | |
| yield "".join(outputs) | |
| def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): | |
| repetition_penalty=float(repetition_penalty) | |
| print('LLL', [message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p]) | |
| # Format history with a given chat template | |
| if CHAT_TEMPLATE == "ChatML": | |
| stop_tokens = ["<|endoftext|>", "<|im_end|>"] | |
| instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' | |
| for human, assistant in history: | |
| instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant | |
| instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n' | |
| elif CHAT_TEMPLATE == "Mistral Instruct": | |
| stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "] | |
| instruction = '<s>[INST] ' + system_prompt | |
| for human, assistant in history: | |
| instruction += human + ' [/INST] ' + assistant + '</s>[INST]' | |
| instruction += ' ' + message + ' [/INST]' | |
| elif CHAT_TEMPLATE == "Bielik": | |
| stop_tokens = ["</s>"] | |
| prompt_builder = ["<s>[INST] "] | |
| if system_prompt: | |
| prompt_builder.append(f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n") | |
| for human, assistant in history: | |
| prompt_builder.append(f"{human} [/INST] {assistant}</s>[INST] ") | |
| prompt_builder.append(f"{message} [/INST]") | |
| instruction = ''.join(prompt_builder) | |
| else: | |
| raise Exception("Incorrect chat template, select 'ChatML' or 'Mistral Instruct'") | |
| print(instruction) | |
| for output_text in generate(instruction, stop_tokens, temperature, max_new_tokens, top_k, repetition_penalty, top_p): | |
| yield output_text | |
| send_discord(instruction, output_text) | |
| hfapi = HfApi() | |
| day=datetime.now().strftime("%Y-%m-%d") | |
| timestamp=datetime.now().timestamp() | |
| dd={ | |
| 'message': message, | |
| 'history': history, | |
| 'system_prompt':system_prompt, | |
| 'temperature':temperature, | |
| 'max_new_tokens':max_new_tokens, | |
| 'top_k':top_k, | |
| 'repetition_penalty':repetition_penalty, | |
| 'top_p':top_p, | |
| 'instruction':instruction, | |
| 'output':output_text, | |
| 'precision': 'auto '+str(model.dtype), | |
| } | |
| hfapi.upload_file( | |
| path_or_fileobj=json.dumps(dd, indent=2, ensure_ascii=False).encode('utf-8'), | |
| path_in_repo=f"{day}/{timestamp}.json", | |
| repo_id="speakleash/bielik-logs", | |
| repo_type="dataset", | |
| commit_message=f"X", | |
| token=TOKEN, | |
| run_as_future=True | |
| ) | |
| on_load=""" | |
| async()=>{ | |
| alert("Przed skorzystaniem z us艂ugi u偶ytkownicy musz膮 wyrazi膰 zgod臋 na nast臋puj膮ce warunki:\\n\\nProsz臋 pami臋ta膰, 偶e przedstawiony tutaj model jest narz臋dziem eksperymentalnym, kt贸re wci膮偶 jest rozwijane i doskonalone.\\n\\nW trakcie procesu tworzenia modelu podj臋to 艣rodki maj膮ce na celu zminimalizowanie ryzyka generowania tre艣ci wulgarnych, niedozwolonych lub nieodpowiednich. Niemniej jednak, w rzadkich przypadkach, niepo偶膮dane tre艣ci mog膮 zosta膰 wygenerowane. Je艣li napotkaj膮 Pa艅stwo na jakiekolwiek tre艣ci uznane za nieodpowiednie lub naruszaj膮ce zasady, prosimy o kontakt w celu zg艂oszenia tego faktu. Dzi臋ki Pa艅stwa informacjom b臋dziemy mogli podejmowa膰 dalsze dzia艂ania maj膮ce na celu popraw臋 i rozw贸j modelu, tak aby by艂 on bezpieczny i przyjazny dla u偶ytkownik贸w.\\n\\nNie wolno u偶ywa膰 modelu do cel贸w nielegalnych, szkodliwych, brutalnych, rasistowskich lub seksualnych. Prosz臋 nie przesy艂a膰 偶adnych prywatnych informacji. Serwis gromadzi dane dialogowe u偶ytkownika i zastrzega sobie prawo do ich rozpowszechniania na podstawie licencji Creative Commons Uznanie autorstwa (CC-BY) lub podobnej."); | |
| } | |
| """ | |
| def vote(chatbot, data: gr.LikeData): | |
| day=datetime.now().strftime("%Y-%m-%d") | |
| timestamp=datetime.now().timestamp() | |
| api.upload_file( | |
| path_or_fileobj=json.dumps({"history":chatbot, 'index': data.index, 'liked': data.liked}, indent=2, ensure_ascii=False).encode('utf-8'), | |
| path_in_repo=f"liked/{day}/{timestamp}.json", | |
| repo_id="speakleash/bielik-logs", | |
| repo_type="dataset", | |
| commit_message=f"L", | |
| token=TOKEN, | |
| run_as_future=True | |
| ) | |
| # Create Gradio interface | |
| def update_examples(): | |
| exs = [ | |
| ["Kim jeste艣?"], | |
| ["Ile to jest 9+2-1?"], | |
| ["Napisz mi co艣 mi艂ego."] | |
| ] | |
| random.shuffle(exs) | |
| return gr.Dataset(samples=exs) | |
| with gr.Blocks(js=on_load) as demo: | |
| chatbot = gr.Chatbot(label="Chatbot", likeable=True, render=False) | |
| chatbot.like(vote, [chatbot], None) | |
| chat = gr.ChatInterface( | |
| predict, | |
| chatbot=chatbot, | |
| title=EMOJI + " " + MODEL_NAME + " - online chat demo", | |
| description=DESCRIPTION, | |
| examples=[ | |
| ["Kim jeste艣?"], | |
| ["Ile to jest 9+2-1?"], | |
| ["Napisz mi co艣 mi艂ego."] | |
| ], | |
| additional_inputs_accordion=gr.Accordion(label="鈿欙笍 Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Textbox("", label="System prompt", render=False), | |
| gr.Slider(0, 1, 0.6, label="Temperature", render=False), | |
| gr.Slider(128, 4096, 1024, label="Max new tokens", render=False), | |
| gr.Slider(1, 80, 40, step=1, label="Top K sampling", render=False), | |
| gr.Slider(0, 2, 1.1, label="Repetition penalty", render=False), | |
| gr.Slider(0, 1, 0.95, label="Top P sampling", render=False), | |
| ], | |
| theme=gr.themes.Soft(primary_hue=COLOR), | |
| ) | |
| demo.load(update_examples, None, chat.examples_handler.dataset) | |
| demo.queue(max_size=20).launch() | |
| # chatbot = gr.Chatbot(label="Chatbot", likeable=True) | |
| # chatbot.like(vote, None, None) | |
| # gr.ChatInterface( | |
| # predict, | |
| # chatbot=chatbot, | |
| # title=EMOJI + " " + MODEL_NAME, | |
| # description=DESCRIPTION, | |
| # examples=[ | |
| # ["Kim jeste艣?"], | |
| # ["Ile to jest 9+2-1?"], | |
| # ["Napisz mi co艣 mi艂ego."] | |
| # ], | |
| # additional_inputs_accordion=gr.Accordion(label="鈿欙笍 Parameters", open=False), | |
| # additional_inputs=[ | |
| # gr.Textbox("", label="System prompt"), | |
| # gr.Slider(0, 1, 0.6, label="Temperature"), | |
| # gr.Slider(128, 4096, 1024, label="Max new tokens"), | |
| # gr.Slider(1, 80, 40, label="Top K sampling"), | |
| # gr.Slider(0, 2, 1.1, label="Repetition penalty"), | |
| # gr.Slider(0, 1, 0.95, label="Top P sampling"), | |
| # ], | |
| # theme=gr.themes.Soft(primary_hue=COLOR), | |
| # js=on_load, | |
| # ).queue().launch() |