Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline, AutoModelForImageClassification, AutoFeatureExtractor | |
| from PIL import Image | |
| import torch | |
| import os | |
| import json | |
| # 设置 Kaggle API 凭证 | |
| def setup_kaggle(): | |
| # 创建 .kaggle 目录 | |
| os.makedirs(os.path.expanduser("~/.kaggle"), exist_ok=True) | |
| # 读取并写入 kaggle.json 文件 | |
| with open("/app/kaggle.json", "r") as f: # 直接使用 /app/kaggle.json 路径 | |
| kaggle_token = json.load(f) | |
| with open(os.path.expanduser("~/.kaggle/kaggle.json"), "w") as f: | |
| json.dump(kaggle_token, f) | |
| os.chmod(os.path.expanduser("~/.kaggle/kaggle.json"), 0o600) | |
| # 从 Kaggle 下载模型文件 | |
| def download_model(): | |
| # 设置 Kaggle API 凭证 | |
| setup_kaggle() | |
| # 使用 Kaggle API 下载文件 | |
| os.system("kaggle kernels output sonia0822/20241015 -p /app") # 修改为您的 Kernel ID 和下载路径 | |
| # 确保模型文件已下载 | |
| if not os.path.exists("/app/model.pth"): | |
| raise FileNotFoundError("模型文件下载失败!") | |
| # 在加载模型前下载 | |
| if not os.path.exists("model.pth"): | |
| print("Downloading model...") | |
| download_model() | |
| # 模型保存路径 | |
| classification_model_path = "/app/model.pth" | |
| gpt2_model_path = "/app/gpt2-finetuned" | |
| # 加载分类模型和特征提取器 | |
| print("加载分类模型...") | |
| classification_model = AutoModelForImageClassification.from_pretrained( | |
| "microsoft/beit-base-patch16-224-pt22k", num_labels=16 | |
| ) | |
| classification_model.load_state_dict(torch.load(classification_model_path, map_location="cpu")) | |
| feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") | |
| print("分类模型加载成功") | |
| # 加载 GPT-2 文本生成模型 | |
| print("加载 GPT-2 模型...") | |
| gpt2_generator = pipeline("text-generation", model=gpt2_model_path, tokenizer=gpt2_model_path) | |
| print("GPT-2 模型加载成功") | |
| # 定义风格标签列表 | |
| art_styles = [ | |
| "现实主义", "巴洛克", "后印象派", "印象派", "浪漫主义", "超现实主义", | |
| "表现主义", "立体派", "野兽派", "抽象艺术", "新艺术", "象征主义", | |
| "新古典主义", "洛可可", "文艺复兴", "极简主义" | |
| ] | |
| # 标签映射 | |
| label_mapping = {0: 0, 2: 1, 3: 2, 4: 3, 7: 4, 9: 5, 10: 6, 12: 7, 15: 8, 17: 9, 18: 10, 20: 11, 21: 12, 23: 13, 24: 14, 25: 15} | |
| reverse_label_mapping = {v: k for k, v in label_mapping.items()} | |
| # 生成风格描述的函数 | |
| def classify_and_generate_description(image): | |
| image = image.convert("RGB") | |
| inputs = feature_extractor(images=image, return_tensors="pt").to("cpu") | |
| classification_model.eval() | |
| with torch.no_grad(): | |
| outputs = classification_model(**inputs).logits | |
| predicted_class = torch.argmax(outputs, dim=1).item() | |
| predicted_label = reverse_label_mapping.get(predicted_class, "未知") | |
| predicted_style = art_styles[predicted_class] if predicted_class < len(art_styles) else "未知" | |
| prompt = f"请详细描述{predicted_style}的艺术风格。" | |
| description = gpt2_generator(prompt, max_length=100, num_return_sequences=1)[0]["generated_text"] | |
| return predicted_style, description | |
| def ask_gpt2(question): | |
| response = gpt2_generator(question, max_length=100, num_return_sequences=1)[0]["generated_text"] | |
| return response | |
| # Gradio 界面 | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 艺术风格分类和生成描述") | |
| with gr.Row(): | |
| image_input = gr.Image(label="上传一张艺术图片") | |
| style_output = gr.Textbox(label="预测的艺术风格") | |
| description_output = gr.Textbox(label="生成的风格描述") | |
| with gr.Row(): | |
| question_input = gr.Textbox(label="输入问题") | |
| answer_output = gr.Textbox(label="GPT-2 生成的回答") | |
| classify_btn = gr.Button("生成风格描述") | |
| question_btn = gr.Button("问 GPT-2 一个问题") | |
| classify_btn.click(fn=classify_and_generate_description, inputs=image_input, outputs=[style_output, description_output]) | |
| question_btn.click(fn=ask_gpt2, inputs=question_input, outputs=answer_output) | |
| demo.launch() | |