Commit
·
a452bfa
1
Parent(s):
16bb8d9
Add Gradio application and dependencies for deployment
Browse files- README.md +9 -9
- app.py +132 -0
- requirements.txt +7 -0
README.md
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
-
|
| 10 |
-
license: apache-2.0
|
| 11 |
-
short_description: DL Gen AI Project 2025
|
| 12 |
---
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Multi-Label Emotion Classifier
|
| 3 |
+
emoji: 🧠
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.48.0 # Use a recent stable version
|
| 8 |
app_file: app.py
|
| 9 |
+
license: mit
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
+
# Multi-Label Emotion Classification using RoBERTa-Large
|
| 12 |
|
| 13 |
+
This Space deploys the winning model from the DL/GenAI project.
|
| 14 |
+
The model is a fine-tuned RoBERTa-Large transformer utilizing 5-Fold Cross-Validation and dynamic threshold optimization for superior Macro F1-Score.
|
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
+
|
| 6 |
+
# --- Configuration ---
|
| 7 |
+
# Your Model's Hugging Face Repository ID
|
| 8 |
+
# NOTE: This assumes you successfully pushed the model during the CV loop!
|
| 9 |
+
HF_REPO_ID = "sumittguptaa148/DL-Gen-AI-Project"
|
| 10 |
+
MODEL_NAME = "roberta-large" # The base model name
|
| 11 |
+
MAX_LEN = 256
|
| 12 |
+
LABELS = ['anger', 'fear', 'joy', 'sadness', 'surprise']
|
| 13 |
+
|
| 14 |
+
# Optimized Thresholds from the latest output:
|
| 15 |
+
BEST_THRESHOLDS = {
|
| 16 |
+
'anger': 0.64,
|
| 17 |
+
'fear': 0.34,
|
| 18 |
+
'joy': 0.79,
|
| 19 |
+
'sadness': 0.78,
|
| 20 |
+
'surprise': 0.48
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
# --- Load Model and Tokenizer ---
|
| 24 |
+
try:
|
| 25 |
+
# We load AutoModel for a custom architecture, but since we pushed
|
| 26 |
+
# using Trainer, the hub might save it with an AutoModelForSequenceClassification structure
|
| 27 |
+
# Let's try to load the base AutoModel and then load the state dict manually
|
| 28 |
+
|
| 29 |
+
# Load the tokenizer
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_REPO_ID)
|
| 31 |
+
|
| 32 |
+
# Load the model weights and structure.
|
| 33 |
+
# We use AutoModelForSequenceClassification here as Hugging Face Trainer usually
|
| 34 |
+
# saves a classification head that is compatible with this class structure
|
| 35 |
+
# when pushing to the hub.
|
| 36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 37 |
+
model = AutoModelForSequenceClassification.from_pretrained(HF_REPO_ID, num_labels=len(LABELS))
|
| 38 |
+
model.to(device)
|
| 39 |
+
model.eval()
|
| 40 |
+
print(f"Model and Tokenizer loaded from {HF_REPO_ID}")
|
| 41 |
+
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error loading model from Hugging Face Hub: {e}")
|
| 44 |
+
# Fallback/Dummy definitions for deployment setup
|
| 45 |
+
tokenizer = None
|
| 46 |
+
model = None
|
| 47 |
+
device = "cpu"
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# --- Prediction Function ---
|
| 51 |
+
def predict_emotion(text):
|
| 52 |
+
if model is None:
|
| 53 |
+
return "Model failed to load. Please check logs."
|
| 54 |
+
|
| 55 |
+
# Tokenize input
|
| 56 |
+
inputs = tokenizer(
|
| 57 |
+
text,
|
| 58 |
+
padding=True,
|
| 59 |
+
truncation=True,
|
| 60 |
+
max_length=MAX_LEN,
|
| 61 |
+
return_tensors="pt"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Move tensors to device
|
| 65 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 66 |
+
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
outputs = model(**inputs)
|
| 69 |
+
logits = outputs.logits.cpu().numpy()
|
| 70 |
+
|
| 71 |
+
# Convert logits to probabilities (sigmoid)
|
| 72 |
+
probs = 1 / (1 + np.exp(-logits))[0]
|
| 73 |
+
|
| 74 |
+
# Apply dynamic thresholds and format output
|
| 75 |
+
results = {}
|
| 76 |
+
for i, label in enumerate(LABELS):
|
| 77 |
+
prob = probs[i]
|
| 78 |
+
threshold = BEST_THRESHOLDS[label]
|
| 79 |
+
|
| 80 |
+
# Classification
|
| 81 |
+
is_present = " Present" if prob >= threshold else " Absent"
|
| 82 |
+
|
| 83 |
+
# Format for display
|
| 84 |
+
results[f"{label.capitalize()} ({is_present})"] = f"{prob:.4f} (Threshold: {threshold:.2f})"
|
| 85 |
+
|
| 86 |
+
return results
|
| 87 |
+
|
| 88 |
+
# --- Gradio Interface ---
|
| 89 |
+
# Output components for Gradio
|
| 90 |
+
output_components = [
|
| 91 |
+
gr.Textbox(label=f"{label.capitalize()} (Classification & Prob)", lines=1) for label in LABELS
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
# Map output components to keys in the dictionary returned by predict_emotion
|
| 95 |
+
# Gradio expects the output component labels to match the dictionary keys
|
| 96 |
+
output_keys = [f"{label.capitalize()} ({{}})" for label in LABELS] # Placeholder for "Present/Absent" part
|
| 97 |
+
|
| 98 |
+
# Custom function to create the correct output components for Gradio
|
| 99 |
+
def get_output_components():
|
| 100 |
+
# Use Textbox for results
|
| 101 |
+
outputs = []
|
| 102 |
+
for label in LABELS:
|
| 103 |
+
outputs.append(gr.Textbox(label=f"{label.capitalize()} Emotion Result", lines=1))
|
| 104 |
+
return outputs
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# Custom wrapper to ensure output matches the order of Gradio components
|
| 108 |
+
def predict_emotion_gradio(text):
|
| 109 |
+
raw_results = predict_emotion(text)
|
| 110 |
+
|
| 111 |
+
# Reorder results to match the output components list
|
| 112 |
+
ordered_results = []
|
| 113 |
+
for label in LABELS:
|
| 114 |
+
# Find the key that starts with the label (e.g., 'Anger (✅ Present)')
|
| 115 |
+
key_match = next(k for k in raw_results if k.startswith(label.capitalize()))
|
| 116 |
+
ordered_results.append(raw_results[key_match])
|
| 117 |
+
|
| 118 |
+
return tuple(ordered_results)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
title = "Multi-Label Emotion Classification with RoBERTa-Large"
|
| 122 |
+
description = "A DL/GenAI project classifying text into Anger, Fear, Joy, Sadness, and Surprise. The model uses a fine-tuned RoBERTa-Large with 5-Fold CV and dynamic threshold optimization."
|
| 123 |
+
|
| 124 |
+
gr.Interface(
|
| 125 |
+
fn=predict_emotion_gradio,
|
| 126 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter a sentence or short text here...", label="Input Text"),
|
| 127 |
+
outputs=get_output_components(), # Use the custom function to get ordered components
|
| 128 |
+
title=title,
|
| 129 |
+
description=description,
|
| 130 |
+
allow_flagging="never",
|
| 131 |
+
theme="huggingface"
|
| 132 |
+
).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
pandas
|
| 3 |
+
numpy
|
| 4 |
+
transformers
|
| 5 |
+
datasets
|
| 6 |
+
scikit-learn
|
| 7 |
+
gradio # Front-end framework
|