Spaces:
Sleeping
Sleeping
| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| from pathlib import Path | |
| from ultralytics.engine.model import Model | |
| from .predict import FastSAMPredictor | |
| from .val import FastSAMValidator | |
| class FastSAM(Model): | |
| """ | |
| FastSAM model interface. | |
| Example: | |
| ```python | |
| from ultralytics import FastSAM | |
| model = FastSAM("last.pt") | |
| results = model.predict("ultralytics/assets/bus.jpg") | |
| ``` | |
| """ | |
| def __init__(self, model="FastSAM-x.pt"): | |
| """Call the __init__ method of the parent class (YOLO) with the updated default model.""" | |
| if str(model) == "FastSAM.pt": | |
| model = "FastSAM-x.pt" | |
| assert Path(model).suffix not in {".yaml", ".yml"}, "FastSAM models only support pre-trained models." | |
| super().__init__(model=model, task="segment") | |
| def predict(self, source, stream=False, bboxes=None, points=None, labels=None, texts=None, **kwargs): | |
| """ | |
| Perform segmentation prediction on image or video source. | |
| Supports prompted segmentation with bounding boxes, points, labels, and texts. | |
| Args: | |
| source (str | PIL.Image | numpy.ndarray): Input source. | |
| stream (bool): Enable real-time streaming. | |
| bboxes (list): Bounding box coordinates for prompted segmentation. | |
| points (list): Points for prompted segmentation. | |
| labels (list): Labels for prompted segmentation. | |
| texts (list): Texts for prompted segmentation. | |
| **kwargs (Any): Additional keyword arguments. | |
| Returns: | |
| (list): Model predictions. | |
| """ | |
| prompts = dict(bboxes=bboxes, points=points, labels=labels, texts=texts) | |
| return super().predict(source, stream, prompts=prompts, **kwargs) | |
| def task_map(self): | |
| """Returns a dictionary mapping segment task to corresponding predictor and validator classes.""" | |
| return {"segment": {"predictor": FastSAMPredictor, "validator": FastSAMValidator}} | |