Spaces:
Sleeping
Sleeping
| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from functools import partial | |
| import torch | |
| from ultralytics.utils.downloads import attempt_download_asset | |
| from .modules.decoders import MaskDecoder | |
| from .modules.encoders import FpnNeck, Hiera, ImageEncoder, ImageEncoderViT, MemoryEncoder, PromptEncoder | |
| from .modules.memory_attention import MemoryAttention, MemoryAttentionLayer | |
| from .modules.sam import SAM2Model, SAMModel | |
| from .modules.tiny_encoder import TinyViT | |
| from .modules.transformer import TwoWayTransformer | |
| def build_sam_vit_h(checkpoint=None): | |
| """Builds and returns a Segment Anything Model (SAM) h-size model with specified encoder parameters.""" | |
| return _build_sam( | |
| encoder_embed_dim=1280, | |
| encoder_depth=32, | |
| encoder_num_heads=16, | |
| encoder_global_attn_indexes=[7, 15, 23, 31], | |
| checkpoint=checkpoint, | |
| ) | |
| def build_sam_vit_l(checkpoint=None): | |
| """Builds and returns a Segment Anything Model (SAM) l-size model with specified encoder parameters.""" | |
| return _build_sam( | |
| encoder_embed_dim=1024, | |
| encoder_depth=24, | |
| encoder_num_heads=16, | |
| encoder_global_attn_indexes=[5, 11, 17, 23], | |
| checkpoint=checkpoint, | |
| ) | |
| def build_sam_vit_b(checkpoint=None): | |
| """Constructs and returns a Segment Anything Model (SAM) with b-size architecture and optional checkpoint.""" | |
| return _build_sam( | |
| encoder_embed_dim=768, | |
| encoder_depth=12, | |
| encoder_num_heads=12, | |
| encoder_global_attn_indexes=[2, 5, 8, 11], | |
| checkpoint=checkpoint, | |
| ) | |
| def build_mobile_sam(checkpoint=None): | |
| """Builds and returns a Mobile Segment Anything Model (Mobile-SAM) for efficient image segmentation.""" | |
| return _build_sam( | |
| encoder_embed_dim=[64, 128, 160, 320], | |
| encoder_depth=[2, 2, 6, 2], | |
| encoder_num_heads=[2, 4, 5, 10], | |
| encoder_global_attn_indexes=None, | |
| mobile_sam=True, | |
| checkpoint=checkpoint, | |
| ) | |
| def build_sam2_t(checkpoint=None): | |
| """Builds and returns a Segment Anything Model 2 (SAM2) tiny-size model with specified architecture parameters.""" | |
| return _build_sam2( | |
| encoder_embed_dim=96, | |
| encoder_stages=[1, 2, 7, 2], | |
| encoder_num_heads=1, | |
| encoder_global_att_blocks=[5, 7, 9], | |
| encoder_window_spec=[8, 4, 14, 7], | |
| encoder_backbone_channel_list=[768, 384, 192, 96], | |
| checkpoint=checkpoint, | |
| ) | |
| def build_sam2_s(checkpoint=None): | |
| """Builds and returns a small-size Segment Anything Model (SAM2) with specified architecture parameters.""" | |
| return _build_sam2( | |
| encoder_embed_dim=96, | |
| encoder_stages=[1, 2, 11, 2], | |
| encoder_num_heads=1, | |
| encoder_global_att_blocks=[7, 10, 13], | |
| encoder_window_spec=[8, 4, 14, 7], | |
| encoder_backbone_channel_list=[768, 384, 192, 96], | |
| checkpoint=checkpoint, | |
| ) | |
| def build_sam2_b(checkpoint=None): | |
| """Builds and returns a SAM2 base-size model with specified architecture parameters.""" | |
| return _build_sam2( | |
| encoder_embed_dim=112, | |
| encoder_stages=[2, 3, 16, 3], | |
| encoder_num_heads=2, | |
| encoder_global_att_blocks=[12, 16, 20], | |
| encoder_window_spec=[8, 4, 14, 7], | |
| encoder_window_spatial_size=[14, 14], | |
| encoder_backbone_channel_list=[896, 448, 224, 112], | |
| checkpoint=checkpoint, | |
| ) | |
| def build_sam2_l(checkpoint=None): | |
| """Builds and returns a large-size Segment Anything Model (SAM2) with specified architecture parameters.""" | |
| return _build_sam2( | |
| encoder_embed_dim=144, | |
| encoder_stages=[2, 6, 36, 4], | |
| encoder_num_heads=2, | |
| encoder_global_att_blocks=[23, 33, 43], | |
| encoder_window_spec=[8, 4, 16, 8], | |
| encoder_backbone_channel_list=[1152, 576, 288, 144], | |
| checkpoint=checkpoint, | |
| ) | |
| def _build_sam( | |
| encoder_embed_dim, | |
| encoder_depth, | |
| encoder_num_heads, | |
| encoder_global_attn_indexes, | |
| checkpoint=None, | |
| mobile_sam=False, | |
| ): | |
| """ | |
| Builds a Segment Anything Model (SAM) with specified encoder parameters. | |
| Args: | |
| encoder_embed_dim (int | List[int]): Embedding dimension for the encoder. | |
| encoder_depth (int | List[int]): Depth of the encoder. | |
| encoder_num_heads (int | List[int]): Number of attention heads in the encoder. | |
| encoder_global_attn_indexes (List[int] | None): Indexes for global attention in the encoder. | |
| checkpoint (str | None): Path to the model checkpoint file. | |
| mobile_sam (bool): Whether to build a Mobile-SAM model. | |
| Returns: | |
| (SAMModel): A Segment Anything Model instance with the specified architecture. | |
| Examples: | |
| >>> sam = _build_sam(768, 12, 12, [2, 5, 8, 11]) | |
| >>> sam = _build_sam([64, 128, 160, 320], [2, 2, 6, 2], [2, 4, 5, 10], None, mobile_sam=True) | |
| """ | |
| prompt_embed_dim = 256 | |
| image_size = 1024 | |
| vit_patch_size = 16 | |
| image_embedding_size = image_size // vit_patch_size | |
| image_encoder = ( | |
| TinyViT( | |
| img_size=1024, | |
| in_chans=3, | |
| num_classes=1000, | |
| embed_dims=encoder_embed_dim, | |
| depths=encoder_depth, | |
| num_heads=encoder_num_heads, | |
| window_sizes=[7, 7, 14, 7], | |
| mlp_ratio=4.0, | |
| drop_rate=0.0, | |
| drop_path_rate=0.0, | |
| use_checkpoint=False, | |
| mbconv_expand_ratio=4.0, | |
| local_conv_size=3, | |
| layer_lr_decay=0.8, | |
| ) | |
| if mobile_sam | |
| else ImageEncoderViT( | |
| depth=encoder_depth, | |
| embed_dim=encoder_embed_dim, | |
| img_size=image_size, | |
| mlp_ratio=4, | |
| norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), | |
| num_heads=encoder_num_heads, | |
| patch_size=vit_patch_size, | |
| qkv_bias=True, | |
| use_rel_pos=True, | |
| global_attn_indexes=encoder_global_attn_indexes, | |
| window_size=14, | |
| out_chans=prompt_embed_dim, | |
| ) | |
| ) | |
| sam = SAMModel( | |
| image_encoder=image_encoder, | |
| prompt_encoder=PromptEncoder( | |
| embed_dim=prompt_embed_dim, | |
| image_embedding_size=(image_embedding_size, image_embedding_size), | |
| input_image_size=(image_size, image_size), | |
| mask_in_chans=16, | |
| ), | |
| mask_decoder=MaskDecoder( | |
| num_multimask_outputs=3, | |
| transformer=TwoWayTransformer( | |
| depth=2, | |
| embedding_dim=prompt_embed_dim, | |
| mlp_dim=2048, | |
| num_heads=8, | |
| ), | |
| transformer_dim=prompt_embed_dim, | |
| iou_head_depth=3, | |
| iou_head_hidden_dim=256, | |
| ), | |
| pixel_mean=[123.675, 116.28, 103.53], | |
| pixel_std=[58.395, 57.12, 57.375], | |
| ) | |
| if checkpoint is not None: | |
| checkpoint = attempt_download_asset(checkpoint) | |
| with open(checkpoint, "rb") as f: | |
| state_dict = torch.load(f) | |
| sam.load_state_dict(state_dict) | |
| sam.eval() | |
| return sam | |
| def _build_sam2( | |
| encoder_embed_dim=1280, | |
| encoder_stages=[2, 6, 36, 4], | |
| encoder_num_heads=2, | |
| encoder_global_att_blocks=[7, 15, 23, 31], | |
| encoder_backbone_channel_list=[1152, 576, 288, 144], | |
| encoder_window_spatial_size=[7, 7], | |
| encoder_window_spec=[8, 4, 16, 8], | |
| checkpoint=None, | |
| ): | |
| """ | |
| Builds and returns a Segment Anything Model 2 (SAM2) with specified architecture parameters. | |
| Args: | |
| encoder_embed_dim (int): Embedding dimension for the encoder. | |
| encoder_stages (List[int]): Number of blocks in each stage of the encoder. | |
| encoder_num_heads (int): Number of attention heads in the encoder. | |
| encoder_global_att_blocks (List[int]): Indices of global attention blocks in the encoder. | |
| encoder_backbone_channel_list (List[int]): Channel dimensions for each level of the encoder backbone. | |
| encoder_window_spatial_size (List[int]): Spatial size of the window for position embeddings. | |
| encoder_window_spec (List[int]): Window specifications for each stage of the encoder. | |
| checkpoint (str | None): Path to the checkpoint file for loading pre-trained weights. | |
| Returns: | |
| (SAM2Model): A configured and initialized SAM2 model. | |
| Examples: | |
| >>> sam2_model = _build_sam2(encoder_embed_dim=96, encoder_stages=[1, 2, 7, 2]) | |
| >>> sam2_model.eval() | |
| """ | |
| image_encoder = ImageEncoder( | |
| trunk=Hiera( | |
| embed_dim=encoder_embed_dim, | |
| num_heads=encoder_num_heads, | |
| stages=encoder_stages, | |
| global_att_blocks=encoder_global_att_blocks, | |
| window_pos_embed_bkg_spatial_size=encoder_window_spatial_size, | |
| window_spec=encoder_window_spec, | |
| ), | |
| neck=FpnNeck( | |
| d_model=256, | |
| backbone_channel_list=encoder_backbone_channel_list, | |
| fpn_top_down_levels=[2, 3], | |
| fpn_interp_model="nearest", | |
| ), | |
| scalp=1, | |
| ) | |
| memory_attention = MemoryAttention(d_model=256, pos_enc_at_input=True, num_layers=4, layer=MemoryAttentionLayer()) | |
| memory_encoder = MemoryEncoder(out_dim=64) | |
| is_sam2_1 = checkpoint is not None and "sam2.1" in checkpoint | |
| sam2 = SAM2Model( | |
| image_encoder=image_encoder, | |
| memory_attention=memory_attention, | |
| memory_encoder=memory_encoder, | |
| num_maskmem=7, | |
| image_size=1024, | |
| sigmoid_scale_for_mem_enc=20.0, | |
| sigmoid_bias_for_mem_enc=-10.0, | |
| use_mask_input_as_output_without_sam=True, | |
| directly_add_no_mem_embed=True, | |
| use_high_res_features_in_sam=True, | |
| multimask_output_in_sam=True, | |
| iou_prediction_use_sigmoid=True, | |
| use_obj_ptrs_in_encoder=True, | |
| add_tpos_enc_to_obj_ptrs=True, | |
| only_obj_ptrs_in_the_past_for_eval=True, | |
| pred_obj_scores=True, | |
| pred_obj_scores_mlp=True, | |
| fixed_no_obj_ptr=True, | |
| multimask_output_for_tracking=True, | |
| use_multimask_token_for_obj_ptr=True, | |
| multimask_min_pt_num=0, | |
| multimask_max_pt_num=1, | |
| use_mlp_for_obj_ptr_proj=True, | |
| compile_image_encoder=False, | |
| no_obj_embed_spatial=is_sam2_1, | |
| proj_tpos_enc_in_obj_ptrs=is_sam2_1, | |
| use_signed_tpos_enc_to_obj_ptrs=is_sam2_1, | |
| sam_mask_decoder_extra_args=dict( | |
| dynamic_multimask_via_stability=True, | |
| dynamic_multimask_stability_delta=0.05, | |
| dynamic_multimask_stability_thresh=0.98, | |
| ), | |
| ) | |
| if checkpoint is not None: | |
| checkpoint = attempt_download_asset(checkpoint) | |
| with open(checkpoint, "rb") as f: | |
| state_dict = torch.load(f)["model"] | |
| sam2.load_state_dict(state_dict) | |
| sam2.eval() | |
| return sam2 | |
| sam_model_map = { | |
| "sam_h.pt": build_sam_vit_h, | |
| "sam_l.pt": build_sam_vit_l, | |
| "sam_b.pt": build_sam_vit_b, | |
| "mobile_sam.pt": build_mobile_sam, | |
| "sam2_t.pt": build_sam2_t, | |
| "sam2_s.pt": build_sam2_s, | |
| "sam2_b.pt": build_sam2_b, | |
| "sam2_l.pt": build_sam2_l, | |
| "sam2.1_t.pt": build_sam2_t, | |
| "sam2.1_s.pt": build_sam2_s, | |
| "sam2.1_b.pt": build_sam2_b, | |
| "sam2.1_l.pt": build_sam2_l, | |
| } | |
| def build_sam(ckpt="sam_b.pt"): | |
| """ | |
| Builds and returns a Segment Anything Model (SAM) based on the provided checkpoint. | |
| Args: | |
| ckpt (str | Path): Path to the checkpoint file or name of a pre-defined SAM model. | |
| Returns: | |
| (SAMModel | SAM2Model): A configured and initialized SAM or SAM2 model instance. | |
| Raises: | |
| FileNotFoundError: If the provided checkpoint is not a supported SAM model. | |
| Examples: | |
| >>> sam_model = build_sam("sam_b.pt") | |
| >>> sam_model = build_sam("path/to/custom_checkpoint.pt") | |
| Notes: | |
| Supported pre-defined models include: | |
| - SAM: 'sam_h.pt', 'sam_l.pt', 'sam_b.pt', 'mobile_sam.pt' | |
| - SAM2: 'sam2_t.pt', 'sam2_s.pt', 'sam2_b.pt', 'sam2_l.pt' | |
| """ | |
| model_builder = None | |
| ckpt = str(ckpt) # to allow Path ckpt types | |
| for k in sam_model_map.keys(): | |
| if ckpt.endswith(k): | |
| model_builder = sam_model_map.get(k) | |
| if not model_builder: | |
| raise FileNotFoundError(f"{ckpt} is not a supported SAM model. Available models are: \n {sam_model_map.keys()}") | |
| return model_builder(ckpt) | |