Jun Xiong
commited on
Commit
·
428ae5c
1
Parent(s):
fba0a98
data
Browse files- Dashboard_Sample.png +0 -0
- README.md +3 -1
- app.py +24 -122
- board.csv +12 -0
- pyproject.toml +15 -0
- requirements.txt +2 -4
- supermarkt_sales.xlsx +0 -0
Dashboard_Sample.png
DELETED
|
Binary file (24.8 kB)
|
|
|
README.md
CHANGED
|
@@ -8,4 +8,6 @@ app_file: app.py
|
|
| 8 |
pinned: false
|
| 9 |
---
|
| 10 |
|
| 11 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
| 8 |
pinned: false
|
| 9 |
---
|
| 10 |
|
| 11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 12 |
+
|
| 13 |
+
poetry run streamlit run app.py
|
app.py
CHANGED
|
@@ -1,130 +1,32 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
# @YouTube: https://youtube.com/c/CodingIsFun
|
| 4 |
-
# @Project: Sales Dashboard w/ Streamlit
|
| 5 |
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
import streamlit as st # pip install streamlit
|
| 11 |
|
| 12 |
-
|
| 13 |
-
st.set_page_config(page_title="Sales Dashboard", page_icon=":bar_chart:", layout="wide")
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
def get_data_from_excel():
|
| 18 |
-
df = pd.read_excel(
|
| 19 |
-
io="supermarkt_sales.xlsx",
|
| 20 |
-
engine="openpyxl",
|
| 21 |
-
sheet_name="Sales",
|
| 22 |
-
skiprows=3,
|
| 23 |
-
usecols="B:R",
|
| 24 |
-
nrows=1000,
|
| 25 |
-
)
|
| 26 |
-
# Add 'hour' column to dataframe
|
| 27 |
-
df["hour"] = pd.to_datetime(df["Time"], format="%H:%M:%S").dt.hour
|
| 28 |
-
return df
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
options=df["Customer_type"].unique(),
|
| 43 |
-
default=df["Customer_type"].unique(),
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
gender = st.sidebar.multiselect(
|
| 47 |
-
"Select the Gender:",
|
| 48 |
-
options=df["Gender"].unique(),
|
| 49 |
-
default=df["Gender"].unique()
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
df_selection = df.query(
|
| 53 |
-
"City == @city & Customer_type ==@customer_type & Gender == @gender"
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
# Check if the dataframe is empty:
|
| 57 |
-
if df_selection.empty:
|
| 58 |
-
st.warning("No data available based on the current filter settings!")
|
| 59 |
-
st.stop() # This will halt the app from further execution.
|
| 60 |
-
|
| 61 |
-
# ---- MAINPAGE ----
|
| 62 |
-
st.title(":bar_chart: Sales Dashboard")
|
| 63 |
-
st.markdown("##")
|
| 64 |
-
|
| 65 |
-
# TOP KPI's
|
| 66 |
-
total_sales = int(df_selection["Total"].sum())
|
| 67 |
-
average_rating = round(df_selection["Rating"].mean(), 1)
|
| 68 |
-
star_rating = ":star:" * int(round(average_rating, 0))
|
| 69 |
-
average_sale_by_transaction = round(df_selection["Total"].mean(), 2)
|
| 70 |
-
|
| 71 |
-
left_column, middle_column, right_column = st.columns(3)
|
| 72 |
-
with left_column:
|
| 73 |
-
st.subheader("Total Sales:")
|
| 74 |
-
st.subheader(f"US $ {total_sales:,}")
|
| 75 |
-
with middle_column:
|
| 76 |
-
st.subheader("Average Rating:")
|
| 77 |
-
st.subheader(f"{average_rating} {star_rating}")
|
| 78 |
-
with right_column:
|
| 79 |
-
st.subheader("Average Sales Per Transaction:")
|
| 80 |
-
st.subheader(f"US $ {average_sale_by_transaction}")
|
| 81 |
-
|
| 82 |
-
st.markdown("""---""")
|
| 83 |
-
|
| 84 |
-
# SALES BY PRODUCT LINE [BAR CHART]
|
| 85 |
-
sales_by_product_line = df_selection.groupby(by=["Product line"])[["Total"]].sum().sort_values(by="Total")
|
| 86 |
-
fig_product_sales = px.bar(
|
| 87 |
-
sales_by_product_line,
|
| 88 |
-
x="Total",
|
| 89 |
-
y=sales_by_product_line.index,
|
| 90 |
-
orientation="h",
|
| 91 |
-
title="<b>Sales by Product Line</b>",
|
| 92 |
-
color_discrete_sequence=["#0083B8"] * len(sales_by_product_line),
|
| 93 |
-
template="plotly_white",
|
| 94 |
-
)
|
| 95 |
-
fig_product_sales.update_layout(
|
| 96 |
-
plot_bgcolor="rgba(0,0,0,0)",
|
| 97 |
-
xaxis=(dict(showgrid=False))
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
# SALES BY HOUR [BAR CHART]
|
| 101 |
-
sales_by_hour = df_selection.groupby(by=["hour"])[["Total"]].sum()
|
| 102 |
-
fig_hourly_sales = px.bar(
|
| 103 |
-
sales_by_hour,
|
| 104 |
-
x=sales_by_hour.index,
|
| 105 |
-
y="Total",
|
| 106 |
-
title="<b>Sales by hour</b>",
|
| 107 |
-
color_discrete_sequence=["#0083B8"] * len(sales_by_hour),
|
| 108 |
-
template="plotly_white",
|
| 109 |
-
)
|
| 110 |
-
fig_hourly_sales.update_layout(
|
| 111 |
-
xaxis=dict(tickmode="linear"),
|
| 112 |
-
plot_bgcolor="rgba(0,0,0,0)",
|
| 113 |
-
yaxis=(dict(showgrid=False)),
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
left_column, right_column = st.columns(2)
|
| 118 |
-
left_column.plotly_chart(fig_hourly_sales, use_container_width=True)
|
| 119 |
-
right_column.plotly_chart(fig_product_sales, use_container_width=True)
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
# ---- HIDE STREAMLIT STYLE ----
|
| 123 |
-
hide_st_style = """
|
| 124 |
-
<style>
|
| 125 |
-
#MainMenu {visibility: hidden;}
|
| 126 |
-
footer {visibility: hidden;}
|
| 127 |
-
header {visibility: hidden;}
|
| 128 |
-
</style>
|
| 129 |
-
"""
|
| 130 |
-
st.markdown(hide_st_style, unsafe_allow_html=True)
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
|
|
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
+
# Function to highlight the given value
|
| 6 |
+
def highlight_value(val, highlight):
|
| 7 |
+
color = 'yellow' if val == highlight else ''
|
| 8 |
+
return f'background-color: {color}'
|
| 9 |
|
| 10 |
+
# Value to be highlighted
|
| 11 |
+
highlight = "ongoing"
|
|
|
|
| 12 |
|
| 13 |
+
df = pd.read_csv('board.csv')
|
|
|
|
| 14 |
|
| 15 |
+
# Apply the highlighting
|
| 16 |
+
df_styled = df.style.applymap(lambda x: highlight_value(x, highlight))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Convert the styled DataFrame to HTML
|
| 19 |
+
df_html = df_styled.set_table_attributes('class="dataframe"')
|
| 20 |
|
| 21 |
+
# Add CSS for setting cell width
|
| 22 |
+
css = """
|
| 23 |
+
<style>
|
| 24 |
+
.dataframe td {
|
| 25 |
+
max-width: 100px;
|
| 26 |
+
word-wrap: break-word;
|
| 27 |
+
}
|
| 28 |
+
</style>
|
| 29 |
+
"""
|
| 30 |
|
| 31 |
+
# Display the styled DataFrame with custom CSS in Streamlit
|
| 32 |
+
st.write(df_html, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
board.csv
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
City,parcel,street,building,buildablelot,due,tsec,status
|
| 2 |
+
San Jose, 247614, 41241,324217,0,0,2010432,ongoing
|
| 3 |
+
San Francisco, 0, 0,0,0,0,0,tostart
|
| 4 |
+
Los Angeles, 0, 0,0,0,0,0,tostart
|
| 5 |
+
San Diego, 0, 0,0,0,0,0,tostart
|
| 6 |
+
Sacramento, 0, 0,0,0,0,0,tostart
|
| 7 |
+
Fresno, 0, 0,0,0,0,0,tostart
|
| 8 |
+
Oakland, 0, 0,0,0,0,0,tostart
|
| 9 |
+
Long Beach, 0, 0,0,0,0,0,tostart
|
| 10 |
+
Anaheim, 0, 0,0,0,0,0,tostart
|
| 11 |
+
Bakersfield, 0, 0,0,0,0,0,tostart
|
| 12 |
+
Riverside, 0, 0,0,0,0,0,tostart
|
pyproject.toml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.poetry]
|
| 2 |
+
name = "dashboard"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = ""
|
| 5 |
+
authors = ["Jun Xiong"]
|
| 6 |
+
readme = "README.md"
|
| 7 |
+
|
| 8 |
+
[tool.poetry.dependencies]
|
| 9 |
+
python = "^3.12"
|
| 10 |
+
pandas = "^2.2.2"
|
| 11 |
+
streamlit = "^1.36.0"
|
| 12 |
+
|
| 13 |
+
[build-system]
|
| 14 |
+
requires = ["poetry-core"]
|
| 15 |
+
build-backend = "poetry.core.masonry.api"
|
requirements.txt
CHANGED
|
@@ -1,4 +1,2 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
plotly==5.13.1
|
| 4 |
-
streamlit==1.25.0
|
|
|
|
| 1 |
+
pandas==1.1.3
|
| 2 |
+
streamlit==0.72.0
|
|
|
|
|
|
supermarkt_sales.xlsx
DELETED
|
Binary file (125 kB)
|
|
|