Spaces:
Running
Running
Commit
·
693e699
1
Parent(s):
3bbc5a2
Add application file
Browse files- Dockerfile +16 -0
- app.py +26 -0
- requirements.txt +3 -0
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.9
|
| 5 |
+
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . /app
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
# Load the pre-trained sentence transformer model
|
| 7 |
+
bge_small_model = SentenceTransformer('BAAI/bge-small-en-v1.5', device="cpu")
|
| 8 |
+
all_mp_net_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device="cpu")
|
| 9 |
+
|
| 10 |
+
# Initialize FastAPI app
|
| 11 |
+
app = FastAPI()
|
| 12 |
+
|
| 13 |
+
# Request body model
|
| 14 |
+
class TextInput(BaseModel):
|
| 15 |
+
text: List[str] # List of sentences or text data
|
| 16 |
+
model_name: str
|
| 17 |
+
|
| 18 |
+
# Route to calculate embeddings
|
| 19 |
+
@app.post("/get-embedding/")
|
| 20 |
+
async def get_embedding(input: TextInput):
|
| 21 |
+
# Generate embeddings using the sentence transformer model
|
| 22 |
+
if input.model_name == "BM":
|
| 23 |
+
embeddings = all_mp_net_model.encode(input.text)
|
| 24 |
+
else:
|
| 25 |
+
embeddings = bge_small_model.encode(input.text)
|
| 26 |
+
return {"embeddings": embeddings.tolist()}
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
sentence_transformers
|