Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,827 +1,125 @@
|
|
| 1 |
-
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import requests
|
| 4 |
-
import inspect
|
| 5 |
-
import time
|
| 6 |
-
import pandas as pd
|
| 7 |
-
from smolagents import DuckDuckGoSearchTool
|
| 8 |
-
import threading
|
| 9 |
-
from typing import Dict, List, Optional, Tuple, Union
|
| 10 |
-
import json
|
| 11 |
-
from huggingface_hub import InferenceClient
|
| 12 |
-
import base64
|
| 13 |
-
from PIL import Image
|
| 14 |
-
import io
|
| 15 |
-
import tempfile
|
| 16 |
-
import urllib.parse
|
| 17 |
-
from pathlib import Path
|
| 18 |
-
import re
|
| 19 |
-
from bs4 import BeautifulSoup
|
| 20 |
-
import mimetypes
|
| 21 |
-
|
| 22 |
-
# --- Constants ---
|
| 23 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 24 |
-
|
| 25 |
-
# --- Global Cache for Answers ---
|
| 26 |
-
cached_answers = {}
|
| 27 |
-
cached_questions = []
|
| 28 |
-
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
| 29 |
-
|
| 30 |
-
# --- Web Content Fetcher ---
|
| 31 |
-
class WebContentFetcher:
|
| 32 |
-
def __init__(self, debug: bool = True):
|
| 33 |
-
self.debug = debug
|
| 34 |
-
self.session = requests.Session()
|
| 35 |
-
self.session.headers.update({
|
| 36 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 37 |
-
})
|
| 38 |
-
|
| 39 |
-
def extract_urls_from_text(self, text: str) -> List[str]:
|
| 40 |
-
"""Extract URLs from text using regex."""
|
| 41 |
-
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
|
| 42 |
-
urls = re.findall(url_pattern, text)
|
| 43 |
-
return list(set(urls)) # Remove duplicates
|
| 44 |
-
|
| 45 |
-
def fetch_url_content(self, url: str) -> Dict[str, str]:
|
| 46 |
-
"""
|
| 47 |
-
Fetch content from a URL and extract text, handling different content types.
|
| 48 |
-
Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys.
|
| 49 |
-
"""
|
| 50 |
-
try:
|
| 51 |
-
# Clean the URL
|
| 52 |
-
url = url.strip()
|
| 53 |
-
if not url.startswith(('http://', 'https://')):
|
| 54 |
-
url = 'https://' + url
|
| 55 |
-
|
| 56 |
-
if self.debug:
|
| 57 |
-
print(f"Fetching URL: {url}")
|
| 58 |
-
|
| 59 |
-
response = self.session.get(url, timeout=30, allow_redirects=True)
|
| 60 |
-
response.raise_for_status()
|
| 61 |
-
|
| 62 |
-
content_type = response.headers.get('content-type', '').lower()
|
| 63 |
-
|
| 64 |
-
result = {
|
| 65 |
-
'url': url,
|
| 66 |
-
'content_type': content_type,
|
| 67 |
-
'title': '',
|
| 68 |
-
'content': '',
|
| 69 |
-
'error': None
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
# Handle different content types
|
| 73 |
-
if 'text/html' in content_type:
|
| 74 |
-
# Parse HTML content
|
| 75 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
| 76 |
-
|
| 77 |
-
# Extract title
|
| 78 |
-
title_tag = soup.find('title')
|
| 79 |
-
result['title'] = title_tag.get_text().strip() if title_tag else 'No title'
|
| 80 |
-
|
| 81 |
-
# Remove script and style elements
|
| 82 |
-
for script in soup(["script", "style"]):
|
| 83 |
-
script.decompose()
|
| 84 |
-
|
| 85 |
-
# Extract text content
|
| 86 |
-
text_content = soup.get_text()
|
| 87 |
-
|
| 88 |
-
# Clean up text
|
| 89 |
-
lines = (line.strip() for line in text_content.splitlines())
|
| 90 |
-
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
| 91 |
-
text_content = ' '.join(chunk for chunk in chunks if chunk)
|
| 92 |
-
|
| 93 |
-
# Limit content length
|
| 94 |
-
if len(text_content) > 8000:
|
| 95 |
-
text_content = text_content[:8000] + "... (truncated)"
|
| 96 |
-
|
| 97 |
-
result['content'] = text_content
|
| 98 |
-
|
| 99 |
-
elif 'text/plain' in content_type:
|
| 100 |
-
# Handle plain text
|
| 101 |
-
text_content = response.text
|
| 102 |
-
if len(text_content) > 8000:
|
| 103 |
-
text_content = text_content[:8000] + "... (truncated)"
|
| 104 |
-
result['content'] = text_content
|
| 105 |
-
result['title'] = f"Text document from {url}"
|
| 106 |
-
|
| 107 |
-
elif 'application/json' in content_type:
|
| 108 |
-
# Handle JSON content
|
| 109 |
-
try:
|
| 110 |
-
json_data = response.json()
|
| 111 |
-
result['content'] = json.dumps(json_data, indent=2)[:8000]
|
| 112 |
-
result['title'] = f"JSON document from {url}"
|
| 113 |
-
except:
|
| 114 |
-
result['content'] = response.text[:8000]
|
| 115 |
-
result['title'] = f"JSON document from {url}"
|
| 116 |
-
|
| 117 |
-
elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']):
|
| 118 |
-
# Handle document files
|
| 119 |
-
result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented."
|
| 120 |
-
result['title'] = f"Document from {url}"
|
| 121 |
-
|
| 122 |
-
else:
|
| 123 |
-
# Handle other content types
|
| 124 |
-
if response.text:
|
| 125 |
-
content = response.text[:8000]
|
| 126 |
-
result['content'] = content
|
| 127 |
-
result['title'] = f"Content from {url}"
|
| 128 |
-
else:
|
| 129 |
-
result['content'] = f"Non-text content detected ({content_type})"
|
| 130 |
-
result['title'] = f"File from {url}"
|
| 131 |
-
|
| 132 |
-
if self.debug:
|
| 133 |
-
print(f"Successfully fetched content from {url}: {len(result['content'])} characters")
|
| 134 |
-
|
| 135 |
-
return result
|
| 136 |
-
|
| 137 |
-
except requests.exceptions.RequestException as e:
|
| 138 |
-
error_msg = f"Failed to fetch {url}: {str(e)}"
|
| 139 |
-
if self.debug:
|
| 140 |
-
print(error_msg)
|
| 141 |
-
return {
|
| 142 |
-
'url': url,
|
| 143 |
-
'content_type': 'error',
|
| 144 |
-
'title': f"Error fetching {url}",
|
| 145 |
-
'content': '',
|
| 146 |
-
'error': error_msg
|
| 147 |
-
}
|
| 148 |
-
except Exception as e:
|
| 149 |
-
error_msg = f"Unexpected error fetching {url}: {str(e)}"
|
| 150 |
-
if self.debug:
|
| 151 |
-
print(error_msg)
|
| 152 |
-
return {
|
| 153 |
-
'url': url,
|
| 154 |
-
'content_type': 'error',
|
| 155 |
-
'title': f"Error fetching {url}",
|
| 156 |
-
'content': '',
|
| 157 |
-
'error': error_msg
|
| 158 |
-
}
|
| 159 |
-
|
| 160 |
-
def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]:
|
| 161 |
-
"""Fetch content from multiple URLs."""
|
| 162 |
-
results = []
|
| 163 |
-
for url in urls[:5]: # Limit to 5 URLs to avoid excessive processing
|
| 164 |
-
result = self.fetch_url_content(url)
|
| 165 |
-
results.append(result)
|
| 166 |
-
time.sleep(1) # Be respectful to servers
|
| 167 |
-
return results
|
| 168 |
-
|
| 169 |
-
# --- File Processing Utility ---
|
| 170 |
-
def save_attachment_to_file(attachment_data: Union[str, bytes, dict], temp_dir: str, file_name: str = None) -> Optional[str]:
|
| 171 |
"""
|
| 172 |
-
|
| 173 |
-
Returns
|
| 174 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
try:
|
| 176 |
-
#
|
| 177 |
-
|
| 178 |
-
file_name = f"attachment_{int(time.time())}"
|
| 179 |
-
|
| 180 |
-
# Handle different data types
|
| 181 |
-
if isinstance(attachment_data, dict):
|
| 182 |
-
# Handle dict with file data
|
| 183 |
-
if 'data' in attachment_data:
|
| 184 |
-
file_data = attachment_data['data']
|
| 185 |
-
file_type = attachment_data.get('type', '').lower()
|
| 186 |
-
original_name = attachment_data.get('name', file_name)
|
| 187 |
-
elif 'content' in attachment_data:
|
| 188 |
-
file_data = attachment_data['content']
|
| 189 |
-
file_type = attachment_data.get('mime_type', '').lower()
|
| 190 |
-
original_name = attachment_data.get('filename', file_name)
|
| 191 |
-
else:
|
| 192 |
-
# Try to use the dict as file data directly
|
| 193 |
-
file_data = str(attachment_data)
|
| 194 |
-
file_type = ''
|
| 195 |
-
original_name = file_name
|
| 196 |
-
|
| 197 |
-
# Use original name if available
|
| 198 |
-
if original_name and original_name != file_name:
|
| 199 |
-
file_name = original_name
|
| 200 |
-
|
| 201 |
-
elif isinstance(attachment_data, str):
|
| 202 |
-
# Could be base64 encoded data or plain text
|
| 203 |
-
file_data = attachment_data
|
| 204 |
-
file_type = ''
|
| 205 |
-
|
| 206 |
-
elif isinstance(attachment_data, bytes):
|
| 207 |
-
# Binary data
|
| 208 |
-
file_data = attachment_data
|
| 209 |
-
file_type = ''
|
| 210 |
-
|
| 211 |
-
else:
|
| 212 |
-
print(f"Unknown attachment data type: {type(attachment_data)}")
|
| 213 |
-
return None
|
| 214 |
-
|
| 215 |
-
# Ensure file has an extension
|
| 216 |
-
if '.' not in file_name:
|
| 217 |
-
# Try to determine extension from type
|
| 218 |
-
if 'image' in file_type:
|
| 219 |
-
if 'jpeg' in file_type or 'jpg' in file_type:
|
| 220 |
-
file_name += '.jpg'
|
| 221 |
-
elif 'png' in file_type:
|
| 222 |
-
file_name += '.png'
|
| 223 |
-
else:
|
| 224 |
-
file_name += '.img'
|
| 225 |
-
elif 'audio' in file_type:
|
| 226 |
-
if 'mp3' in file_type:
|
| 227 |
-
file_name += '.mp3'
|
| 228 |
-
elif 'wav' in file_type:
|
| 229 |
-
file_name += '.wav'
|
| 230 |
-
else:
|
| 231 |
-
file_name += '.audio'
|
| 232 |
-
elif 'python' in file_type or 'text' in file_type:
|
| 233 |
-
file_name += '.py'
|
| 234 |
-
else:
|
| 235 |
-
file_name += '.file'
|
| 236 |
-
|
| 237 |
-
file_path = os.path.join(temp_dir, file_name)
|
| 238 |
-
|
| 239 |
-
# Save the file
|
| 240 |
-
if isinstance(file_data, str):
|
| 241 |
-
# Try to decode if it's base64
|
| 242 |
-
try:
|
| 243 |
-
# Check if it looks like base64
|
| 244 |
-
if len(file_data) > 100 and '=' in file_data[-5:]:
|
| 245 |
-
decoded_data = base64.b64decode(file_data)
|
| 246 |
-
with open(file_path, 'wb') as f:
|
| 247 |
-
f.write(decoded_data)
|
| 248 |
-
else:
|
| 249 |
-
# Plain text
|
| 250 |
-
with open(file_path, 'w', encoding='utf-8') as f:
|
| 251 |
-
f.write(file_data)
|
| 252 |
-
except:
|
| 253 |
-
# If base64 decode fails, save as text
|
| 254 |
-
with open(file_path, 'w', encoding='utf-8') as f:
|
| 255 |
-
f.write(file_data)
|
| 256 |
-
else:
|
| 257 |
-
# Binary data
|
| 258 |
-
with open(file_path, 'wb') as f:
|
| 259 |
-
f.write(file_data)
|
| 260 |
-
|
| 261 |
-
print(f"Saved attachment: {file_path}")
|
| 262 |
-
return file_path
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
| 267 |
|
| 268 |
-
#
|
| 269 |
-
|
| 270 |
-
def __init__(self, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
| 271 |
-
self.client = InferenceClient(model=model_name, provider="sambanova")
|
| 272 |
-
|
| 273 |
-
def analyze_code(self, code_path: str) -> str:
|
| 274 |
-
"""
|
| 275 |
-
Analyze Python code and return insights.
|
| 276 |
-
"""
|
| 277 |
-
try:
|
| 278 |
-
with open(code_path, 'r', encoding='utf-8') as f:
|
| 279 |
-
code_content = f.read()
|
| 280 |
-
|
| 281 |
-
# Limit code length for analysis
|
| 282 |
-
if len(code_content) > 5000:
|
| 283 |
-
code_content = code_content[:5000] + "\n... (truncated)"
|
| 284 |
-
|
| 285 |
-
analysis_prompt = f"""Analyze this Python code and provide a concise summary of:
|
| 286 |
-
1. What the code does (main functionality)
|
| 287 |
-
2. Key functions/classes
|
| 288 |
-
3. Any notable patterns or issues
|
| 289 |
-
4. Input/output behavior if applicable
|
| 290 |
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
messages=messages,
|
| 301 |
-
max_tokens=500,
|
| 302 |
-
temperature=0.3
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
return response.choices[0].message.content.strip()
|
| 306 |
-
|
| 307 |
-
except Exception as e:
|
| 308 |
-
return f"Code analysis failed: {e}"
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
self.client = InferenceClient(model=model_name)
|
| 314 |
-
|
| 315 |
-
def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str:
|
| 316 |
-
"""
|
| 317 |
-
Analyze an image and return a description.
|
| 318 |
-
"""
|
| 319 |
-
try:
|
| 320 |
-
# Open and process the image
|
| 321 |
-
with open(image_path, "rb") as f:
|
| 322 |
-
image_bytes = f.read()
|
| 323 |
-
|
| 324 |
-
# Use the vision model to analyze the image
|
| 325 |
-
response = self.client.image_to_text(
|
| 326 |
-
image=image_bytes,
|
| 327 |
-
model="microsoft/Florence-2-large"
|
| 328 |
-
)
|
| 329 |
-
|
| 330 |
-
return response.get("generated_text", "Could not analyze image")
|
| 331 |
-
|
| 332 |
-
except Exception as e:
|
| 333 |
-
try:
|
| 334 |
-
# Fallback: use a different vision model
|
| 335 |
-
response = self.client.image_to_text(
|
| 336 |
-
image=image_bytes,
|
| 337 |
-
model="Salesforce/blip-image-captioning-large"
|
| 338 |
-
)
|
| 339 |
-
return response.get("generated_text", f"Image analysis error: {e}")
|
| 340 |
-
except:
|
| 341 |
-
return f"Image analysis failed: {e}"
|
| 342 |
|
| 343 |
-
|
| 344 |
-
""
|
| 345 |
-
Extract text from an image using OCR.
|
| 346 |
-
"""
|
| 347 |
-
try:
|
| 348 |
-
with open(image_path, "rb") as f:
|
| 349 |
-
image_bytes = f.read()
|
| 350 |
-
|
| 351 |
-
# Use an OCR model
|
| 352 |
-
response = self.client.image_to_text(
|
| 353 |
-
image=image_bytes,
|
| 354 |
-
model="microsoft/trocr-base-printed"
|
| 355 |
-
)
|
| 356 |
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
except Exception as e:
|
| 360 |
-
return f"OCR failed: {e}"
|
| 361 |
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
""
|
| 369 |
-
|
| 370 |
-
"""
|
| 371 |
-
try:
|
| 372 |
-
with open(audio_path, "rb") as f:
|
| 373 |
-
audio_bytes = f.read()
|
| 374 |
-
|
| 375 |
-
# Use Whisper for transcription
|
| 376 |
-
response = self.client.automatic_speech_recognition(
|
| 377 |
-
audio=audio_bytes
|
| 378 |
-
)
|
| 379 |
-
|
| 380 |
-
return response.get("text", "Could not transcribe audio")
|
| 381 |
-
|
| 382 |
-
except Exception as e:
|
| 383 |
-
try:
|
| 384 |
-
# Fallback to a different ASR model
|
| 385 |
-
response = self.client.automatic_speech_recognition(
|
| 386 |
-
audio=audio_bytes,
|
| 387 |
-
model="facebook/wav2vec2-large-960h-lv60-self"
|
| 388 |
-
)
|
| 389 |
-
return response.get("text", f"Audio transcription error: {e}")
|
| 390 |
-
except:
|
| 391 |
-
return f"Audio transcription failed: {e}"
|
| 392 |
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
|
| 396 |
-
self.search = DuckDuckGoSearchTool()
|
| 397 |
-
self.client = InferenceClient(model=model_name, provider="sambanova")
|
| 398 |
-
self.image_tool = ImageAnalysisTool()
|
| 399 |
-
self.audio_tool = AudioTranscriptionTool()
|
| 400 |
-
self.code_tool = CodeAnalysisTool(model_name)
|
| 401 |
-
self.web_fetcher = WebContentFetcher(debug)
|
| 402 |
-
self.debug = debug
|
| 403 |
if self.debug:
|
| 404 |
-
print(f"
|
| 405 |
-
|
| 406 |
-
def _chat_completion(self, prompt: str, max_tokens: int = 500, temperature: float = 0.3) -> str:
|
| 407 |
-
"""
|
| 408 |
-
Use chat completion instead of text generation to avoid provider compatibility issues.
|
| 409 |
-
"""
|
| 410 |
-
try:
|
| 411 |
-
messages = [{"role": "user", "content": prompt}]
|
| 412 |
-
|
| 413 |
-
# Try chat completion first
|
| 414 |
-
try:
|
| 415 |
-
response = self.client.chat_completion(
|
| 416 |
-
messages=messages,
|
| 417 |
-
max_tokens=max_tokens,
|
| 418 |
-
temperature=temperature
|
| 419 |
-
)
|
| 420 |
-
return response.choices[0].message.content.strip()
|
| 421 |
-
except Exception as chat_error:
|
| 422 |
-
if self.debug:
|
| 423 |
-
print(f"Chat completion failed: {chat_error}, trying text generation...")
|
| 424 |
-
|
| 425 |
-
# Fallback to text generation
|
| 426 |
-
response = self.client.conversational(
|
| 427 |
-
prompt,
|
| 428 |
-
max_new_tokens=max_tokens,
|
| 429 |
-
temperature=temperature,
|
| 430 |
-
do_sample=temperature > 0
|
| 431 |
-
)
|
| 432 |
-
return response.strip()
|
| 433 |
-
|
| 434 |
-
except Exception as e:
|
| 435 |
-
if self.debug:
|
| 436 |
-
print(f"Both chat completion and text generation failed: {e}")
|
| 437 |
-
raise e
|
| 438 |
-
|
| 439 |
-
def _extract_and_process_urls(self, question_text: str) -> str:
|
| 440 |
-
"""
|
| 441 |
-
Extract URLs from question text and fetch their content.
|
| 442 |
-
Returns formatted content from all URLs.
|
| 443 |
-
"""
|
| 444 |
-
urls = self.web_fetcher.extract_urls_from_text(question_text)
|
| 445 |
|
| 446 |
-
|
| 447 |
-
return ""
|
| 448 |
|
|
|
|
|
|
|
|
|
|
| 449 |
if self.debug:
|
| 450 |
-
print(f"
|
| 451 |
-
|
| 452 |
-
url_contents = self.web_fetcher.fetch_multiple_urls(urls)
|
| 453 |
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
formatted_content = []
|
| 459 |
-
for content_data in url_contents:
|
| 460 |
-
if content_data['error']:
|
| 461 |
-
formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}")
|
| 462 |
-
else:
|
| 463 |
-
formatted_content.append(
|
| 464 |
-
f"URL: {content_data['url']}\n"
|
| 465 |
-
f"Title: {content_data['title']}\n"
|
| 466 |
-
f"Content Type: {content_data['content_type']}\n"
|
| 467 |
-
f"Content: {content_data['content']}"
|
| 468 |
-
)
|
| 469 |
-
|
| 470 |
-
return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50
|
| 471 |
-
|
| 472 |
-
def _detect_and_process_direct_attachments(self, file_name: str) -> Tuple[List[str], List[str], List[str]]:
|
| 473 |
-
"""
|
| 474 |
-
Detect and process a single attachment directly attached to a question (not as a URL).
|
| 475 |
-
Returns (image_files, audio_files, code_files)
|
| 476 |
-
"""
|
| 477 |
-
image_files = []
|
| 478 |
-
audio_files = []
|
| 479 |
-
code_files = []
|
| 480 |
-
|
| 481 |
-
try:
|
| 482 |
-
# Here, file_type should ideally come from metadata or inferred from content —
|
| 483 |
-
# since only attachment_name is passed, we'll rely on the file extension.
|
| 484 |
-
# Get file extension
|
| 485 |
-
file_ext = Path(file_name).suffix.lower()
|
| 486 |
-
|
| 487 |
-
# Determine category
|
| 488 |
-
is_image = (
|
| 489 |
-
file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.tiff']
|
| 490 |
-
)
|
| 491 |
-
is_audio = (
|
| 492 |
-
file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac', '.aac']
|
| 493 |
-
)
|
| 494 |
-
is_code = (
|
| 495 |
-
file_ext in ['.py', '.txt', '.js', '.html', '.css', '.json', '.xml']
|
| 496 |
-
)
|
| 497 |
-
|
| 498 |
-
# Categorize the file
|
| 499 |
-
if is_image:
|
| 500 |
-
image_files.append(file_path)
|
| 501 |
-
elif is_audio:
|
| 502 |
-
audio_files.append(file_path)
|
| 503 |
-
elif is_code:
|
| 504 |
-
code_files.append(file_path)
|
| 505 |
-
else:
|
| 506 |
-
# Default to code/text for unknown types
|
| 507 |
-
code_files.append(file_path)
|
| 508 |
-
|
| 509 |
-
except Exception as e:
|
| 510 |
-
if getattr(self, 'debug', False):
|
| 511 |
-
print(f"Error processing attachment {file_name}: {e}")
|
| 512 |
-
|
| 513 |
-
if getattr(self, 'debug', False):
|
| 514 |
-
print(f"...Processed attachment: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files")
|
| 515 |
-
|
| 516 |
-
return image_files, audio_files, code_files
|
| 517 |
-
|
| 518 |
-
def _process_attachments(self, image_files: List[str] = None, audio_files: List[str] = None, code_files: List[str] = None) -> str:
|
| 519 |
-
"""
|
| 520 |
-
Process all types of attachments and return their content as text.
|
| 521 |
-
"""
|
| 522 |
-
attachment_content = []
|
| 523 |
-
|
| 524 |
-
# Process code files
|
| 525 |
-
if code_files:
|
| 526 |
-
for code_file in code_files:
|
| 527 |
-
if code_file and os.path.exists(code_file):
|
| 528 |
-
try:
|
| 529 |
-
# First, include the raw code content (truncated)
|
| 530 |
-
with open(code_file, 'r', encoding='utf-8') as f:
|
| 531 |
-
code_content = f.read()
|
| 532 |
-
|
| 533 |
-
if len(code_content) > 1000:
|
| 534 |
-
code_preview = code_content[:1000] + "\n... (truncated)"
|
| 535 |
-
else:
|
| 536 |
-
code_preview = code_content
|
| 537 |
-
|
| 538 |
-
attachment_content.append(f"Code File Content:\n```python\n{code_preview}\n```")
|
| 539 |
-
|
| 540 |
-
# Then add analysis
|
| 541 |
-
code_analysis = self.code_tool.analyze_code(code_file)
|
| 542 |
-
attachment_content.append(f"Code Analysis: {code_analysis}")
|
| 543 |
-
|
| 544 |
-
except Exception as e:
|
| 545 |
-
attachment_content.append(f"Error processing code file {code_file}: {e}")
|
| 546 |
-
|
| 547 |
-
# Process images
|
| 548 |
-
if image_files:
|
| 549 |
-
for image_file in image_files:
|
| 550 |
-
if image_file and os.path.exists(image_file):
|
| 551 |
-
try:
|
| 552 |
-
# Analyze the image
|
| 553 |
-
image_description = self.image_tool.analyze_image(image_file)
|
| 554 |
-
attachment_content.append(f"Image Analysis: {image_description}")
|
| 555 |
-
|
| 556 |
-
# Try to extract text from image
|
| 557 |
-
extracted_text = self.image_tool.extract_text_from_image(image_file)
|
| 558 |
-
if extracted_text and "No text found" not in extracted_text:
|
| 559 |
-
attachment_content.append(f"Text from Image: {extracted_text}")
|
| 560 |
-
|
| 561 |
-
except Exception as e:
|
| 562 |
-
attachment_content.append(f"Error processing image {image_file}: {e}")
|
| 563 |
-
|
| 564 |
-
# Process audio files
|
| 565 |
-
if audio_files:
|
| 566 |
-
for audio_file in audio_files:
|
| 567 |
-
if audio_file and os.path.exists(audio_file):
|
| 568 |
-
try:
|
| 569 |
-
# Transcribe the audio
|
| 570 |
-
transcription = self.audio_tool.transcribe_audio(audio_file)
|
| 571 |
-
attachment_content.append(f"Audio Transcription: {transcription}")
|
| 572 |
-
|
| 573 |
-
except Exception as e:
|
| 574 |
-
attachment_content.append(f"Error processing audio {audio_file}: {e}")
|
| 575 |
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
"""
|
| 580 |
-
Use LLM to determine if search is needed for the question, considering attachment and URL context.
|
| 581 |
-
Returns True if search is recommended, False otherwise.
|
| 582 |
-
"""
|
| 583 |
-
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
|
| 584 |
-
|
| 585 |
-
SEARCH IS NEEDED for:
|
| 586 |
-
- Current events, news, recent developments
|
| 587 |
-
- Real-time data (weather, stock prices, sports scores)
|
| 588 |
-
- Specific factual information that changes frequently
|
| 589 |
-
- Recent product releases, company information
|
| 590 |
-
- Current status of people, organizations, or projects
|
| 591 |
-
- Location-specific current information
|
| 592 |
-
|
| 593 |
-
SEARCH IS NOT NEEDED for:
|
| 594 |
-
- General knowledge questions
|
| 595 |
-
- Mathematical calculations
|
| 596 |
-
- Programming concepts and syntax
|
| 597 |
-
- Historical facts (older than 1 year)
|
| 598 |
-
- Definitions of well-established concepts
|
| 599 |
-
- How-to instructions for common tasks
|
| 600 |
-
- Creative writing or opinion-based responses
|
| 601 |
-
- Questions that can be answered from attached files (code, images, audio)
|
| 602 |
-
- Questions that can be answered from URL content provided
|
| 603 |
-
- Code analysis, debugging, or explanation questions
|
| 604 |
-
- Questions about uploaded or linked content
|
| 605 |
-
|
| 606 |
-
Question: "{question}"
|
| 607 |
-
|
| 608 |
-
{f"Attachment Context Available: {attachment_context[:1000]}..." if attachment_context else "No attachment context available."}
|
| 609 |
-
|
| 610 |
-
{f"URL Content Available: {url_context[:1000]}..." if url_context else "No URL content available."}
|
| 611 |
-
|
| 612 |
-
If you cannot provide an answer, reply with "NO_SEARCH". Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
|
| 613 |
-
|
| 614 |
-
Example responses:
|
| 615 |
-
- "SEARCH - Current weather data needed"
|
| 616 |
-
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
|
| 617 |
-
- "NO_SEARCH - Can be answered from attached code/image/URL content"
|
| 618 |
-
"""
|
| 619 |
-
|
| 620 |
-
try:
|
| 621 |
-
response = self._chat_completion(decision_prompt, max_tokens=50, temperature=0.1)
|
| 622 |
-
|
| 623 |
-
decision = response.strip().upper()
|
| 624 |
-
should_search = decision.startswith("SEARCH")
|
| 625 |
-
time.sleep(5)
|
| 626 |
-
|
| 627 |
-
if self.debug:
|
| 628 |
-
print(f"4. Decision regarding the search: {decision}")
|
| 629 |
-
|
| 630 |
-
return should_search
|
| 631 |
|
| 632 |
-
|
| 633 |
-
if self.debug:
|
| 634 |
-
print(f"Error in search decision: {e}, defaulting to no search for questions with context")
|
| 635 |
-
# Default to no search if decision fails and there is context available
|
| 636 |
-
return len(attachment_context) == 0 and len(url_context) == 0
|
| 637 |
-
|
| 638 |
-
def _answer_with_llm(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
|
| 639 |
-
"""
|
| 640 |
-
Generate answer using LLM without search, considering attachment and URL context.
|
| 641 |
-
"""
|
| 642 |
-
context_sections = []
|
| 643 |
|
| 644 |
-
|
| 645 |
-
|
| 646 |
|
| 647 |
-
if
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
context_section = "\n\n".join(context_sections) if context_sections else ""
|
| 651 |
-
|
| 652 |
-
answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question.
|
| 653 |
-
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
| 654 |
-
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
| 655 |
-
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
| 656 |
-
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 657 |
-
Do not add a dot after the numbers.
|
| 658 |
-
Do not report on your thoughts. Do not provide explanations.
|
| 659 |
-
{context_section}
|
| 660 |
-
|
| 661 |
-
Question: {question}
|
| 662 |
-
|
| 663 |
-
Answer:"""
|
| 664 |
-
|
| 665 |
-
try:
|
| 666 |
-
response = self._chat_completion(answer_prompt, max_tokens=500, temperature=0.3)
|
| 667 |
-
return response
|
| 668 |
-
|
| 669 |
-
except Exception as e:
|
| 670 |
-
return f"Sorry, I encountered an error generating the response: {e}"
|
| 671 |
-
|
| 672 |
-
def _answer_with_search(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
|
| 673 |
-
"""
|
| 674 |
-
Generate answer using search results and LLM, considering attachment and URL context.
|
| 675 |
-
"""
|
| 676 |
-
try:
|
| 677 |
-
# Perform search
|
| 678 |
-
time.sleep(10)
|
| 679 |
-
search_results = self.search(question)
|
| 680 |
-
|
| 681 |
-
if not search_results:
|
| 682 |
-
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
|
| 683 |
-
|
| 684 |
-
# Format search results - handle different result formats
|
| 685 |
-
if isinstance(search_results, str):
|
| 686 |
-
search_context = search_results
|
| 687 |
-
else:
|
| 688 |
-
# Handle list of results
|
| 689 |
-
formatted_results = []
|
| 690 |
-
for i, result in enumerate(search_results[:3]): # Use top 3 results
|
| 691 |
-
if isinstance(result, dict):
|
| 692 |
-
title = result.get("title", "No title")
|
| 693 |
-
snippet = result.get("snippet", "").strip()
|
| 694 |
-
link = result.get("link", "")
|
| 695 |
-
formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}")
|
| 696 |
-
elif isinstance(result, str):
|
| 697 |
-
formatted_results.append(result)
|
| 698 |
-
else:
|
| 699 |
-
formatted_results.append(str(result))
|
| 700 |
-
|
| 701 |
-
search_context = "\n\n".join(formatted_results)
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
# Generate answer using search context, attachment context, and URL context
|
| 705 |
-
context_sections = [f"Search Results:\n{search_context}"]
|
| 706 |
-
|
| 707 |
-
if attachment_context:
|
| 708 |
-
context_sections.append(f"Attachment Context:\n{attachment_context}")
|
| 709 |
-
|
| 710 |
-
if url_context:
|
| 711 |
-
context_sections.append(f"URL Content:\n{url_context}")
|
| 712 |
-
|
| 713 |
-
full_context = "\n\n".join(context_sections)
|
| 714 |
|
|
|
|
|
|
|
| 715 |
if self.debug:
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question.
|
| 720 |
-
Based on the search results and the context sections below, provide an answer to the question.
|
| 721 |
-
If the search results don't fully answer the question, you can supplement with information from other context sections or your general knowledge.
|
| 722 |
-
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
| 723 |
-
Do not add dot if your answer is a number.
|
| 724 |
-
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
| 725 |
-
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
| 726 |
-
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 727 |
-
Do not report on your thoughts. Do not provide explanations.
|
| 728 |
-
|
| 729 |
-
Question: {question}
|
| 730 |
-
|
| 731 |
-
{full_context}
|
| 732 |
-
|
| 733 |
-
Answer:"""
|
| 734 |
-
|
| 735 |
-
try:
|
| 736 |
-
response = self._chat_completion(answer_prompt, max_tokens=600, temperature=0.3)
|
| 737 |
-
return response
|
| 738 |
-
|
| 739 |
-
except Exception as e:
|
| 740 |
-
if self.debug:
|
| 741 |
-
print(f"LLM generation error: {e}")
|
| 742 |
-
# Fallback to simple search result formatting
|
| 743 |
-
if search_results:
|
| 744 |
-
if isinstance(search_results, str):
|
| 745 |
-
return search_results
|
| 746 |
-
elif isinstance(search_results, list) and len(search_results) > 0:
|
| 747 |
-
first_result = search_results[0]
|
| 748 |
-
if isinstance(first_result, dict):
|
| 749 |
-
title = first_result.get("title", "Search Result")
|
| 750 |
-
snippet = first_result.get("snippet", "").strip()
|
| 751 |
-
link = first_result.get("link", "")
|
| 752 |
-
return f"**{title}**\n\n{snippet}\n\n{f'Source: {link}' if link else ''}"
|
| 753 |
-
else:
|
| 754 |
-
return str(first_result)
|
| 755 |
-
else:
|
| 756 |
-
return str(search_results)
|
| 757 |
-
else:
|
| 758 |
-
return "Search completed but no usable results found."
|
| 759 |
-
|
| 760 |
-
except Exception as e:
|
| 761 |
-
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
|
| 762 |
-
|
| 763 |
-
def process_question_with_attachments(self, question_data: dict) -> str:
|
| 764 |
-
"""
|
| 765 |
-
Process a question that may have attachments and URLs.
|
| 766 |
-
"""
|
| 767 |
-
question_text = question_data.get('question', '')
|
| 768 |
-
print(question_data)
|
| 769 |
-
if self.debug:
|
| 770 |
-
print(f"\n1. Processing question with potential attachments and URLs: {question_text[:300]}...")
|
| 771 |
-
|
| 772 |
-
try:
|
| 773 |
-
# Detect and process URLs
|
| 774 |
-
print(f"2. Detecting and processing URLs...")
|
| 775 |
-
|
| 776 |
-
url_context = self._extract_and_process_urls(question_text)
|
| 777 |
-
|
| 778 |
if self.debug:
|
| 779 |
-
print(
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
try:
|
| 784 |
-
# Detect and download attachments
|
| 785 |
-
print(f"3. Searching for images, audio or code attachments...")
|
| 786 |
-
attachment_name = question_data.get('file_name', '')
|
| 787 |
-
image_files, audio_files, code_files = self._detect_and_process_direct_attachments(attachment_name)
|
| 788 |
-
|
| 789 |
-
# Process attachments to get context
|
| 790 |
-
attachment_context = self._process_attachments(image_files, audio_files, code_files)
|
| 791 |
-
|
| 792 |
-
if self.debug and attachment_context:
|
| 793 |
-
print(f"Attachment context: {attachment_context[:200]}...")
|
| 794 |
-
|
| 795 |
-
# Decide whether to search
|
| 796 |
-
if self._should_search(question_text, attachment_context):
|
| 797 |
-
if self.debug:
|
| 798 |
-
print("5. Using search-based approach")
|
| 799 |
-
answer = self._answer_with_search(question_text, attachment_context)
|
| 800 |
-
else:
|
| 801 |
-
if self.debug:
|
| 802 |
-
print("5. Using LLM-only approach")
|
| 803 |
-
answer = self._answer_with_llm(question_text, attachment_context)
|
| 804 |
-
print("here")
|
| 805 |
-
print(answer)
|
| 806 |
-
# Cleanup temporary files
|
| 807 |
-
if image_files or audio_files or code_files:
|
| 808 |
-
try:
|
| 809 |
-
all_files = image_files + audio_files + code_files
|
| 810 |
-
temp_dirs = set(os.path.dirname(f) for f in all_files)
|
| 811 |
-
for temp_dir in temp_dirs:
|
| 812 |
-
import shutil
|
| 813 |
-
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 814 |
-
except Exception as cleanup_error:
|
| 815 |
-
if self.debug:
|
| 816 |
-
print(f"Cleanup error: {cleanup_error}")
|
| 817 |
|
| 818 |
-
|
| 819 |
-
|
| 820 |
|
|
|
|
| 821 |
if self.debug:
|
| 822 |
-
print(f"
|
| 823 |
-
|
| 824 |
|
|
|
|
|
|
|
|
|
|
| 825 |
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
|
| 826 |
"""
|
| 827 |
Fetch questions from the API and cache them.
|
|
|
|
| 1 |
+
def _detect_and_process_direct_attachments(self, file_name: str) -> Tuple[List[str], List[str], List[str]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"""
|
| 3 |
+
Detect and process a single attachment directly attached to a question (not as a URL).
|
| 4 |
+
Returns (image_files, audio_files, code_files)
|
| 5 |
"""
|
| 6 |
+
image_files = []
|
| 7 |
+
audio_files = []
|
| 8 |
+
code_files = []
|
| 9 |
+
|
| 10 |
+
if not file_name:
|
| 11 |
+
return image_files, audio_files, code_files
|
| 12 |
+
|
| 13 |
try:
|
| 14 |
+
# Construct the file path (assuming file is in current directory)
|
| 15 |
+
file_path = os.path.join(os.getcwd(), file_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Check if file exists
|
| 18 |
+
if not os.path.exists(file_path):
|
| 19 |
+
if self.debug:
|
| 20 |
+
print(f"File not found: {file_path}")
|
| 21 |
+
return image_files, audio_files, code_files
|
| 22 |
|
| 23 |
+
# Get file extension
|
| 24 |
+
file_ext = Path(file_name).suffix.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
# Determine category
|
| 27 |
+
is_image = (
|
| 28 |
+
file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.tiff']
|
| 29 |
+
)
|
| 30 |
+
is_audio = (
|
| 31 |
+
file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac', '.aac']
|
| 32 |
+
)
|
| 33 |
+
is_code = (
|
| 34 |
+
file_ext in ['.py', '.txt', '.js', '.html', '.css', '.json', '.xml', '.md', '.c', '.cpp', '.java']
|
| 35 |
+
)
|
| 36 |
|
| 37 |
+
# Categorize the file
|
| 38 |
+
if is_image:
|
| 39 |
+
image_files.append(file_path)
|
| 40 |
+
elif is_audio:
|
| 41 |
+
audio_files.append(file_path)
|
| 42 |
+
elif is_code:
|
| 43 |
+
code_files.append(file_path)
|
| 44 |
+
else:
|
| 45 |
+
# Default to code/text for unknown types
|
| 46 |
+
code_files.append(file_path)
|
| 47 |
|
| 48 |
+
if self.debug:
|
| 49 |
+
print(f"Processed file: {file_name} -> {'image' if is_image else 'audio' if is_audio else 'code'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
except Exception as e:
|
| 52 |
+
if self.debug:
|
| 53 |
+
print(f"Error processing attachment {file_name}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
if self.debug:
|
| 56 |
+
print(f"Processed attachment: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
return image_files, audio_files, code_files
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
def process_question_with_attachments(self, question_data: dict) -> str:
|
| 61 |
+
"""
|
| 62 |
+
Process a question that may have attachments and URLs.
|
| 63 |
+
"""
|
| 64 |
+
question_text = question_data.get('question', '')
|
| 65 |
+
if self.debug:
|
| 66 |
+
print(f"Question data keys: {list(question_data.keys())}")
|
| 67 |
+
print(f"\n1. Processing question with potential attachments and URLs: {question_text[:300]}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
try:
|
| 70 |
+
# Detect and process URLs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
if self.debug:
|
| 72 |
+
print(f"2. Detecting and processing URLs...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
url_context = self._extract_and_process_urls(question_text)
|
|
|
|
| 75 |
|
| 76 |
+
if self.debug and url_context:
|
| 77 |
+
print(f"URL context found: {len(url_context)} characters")
|
| 78 |
+
except Exception as e:
|
| 79 |
if self.debug:
|
| 80 |
+
print(f"Error extracting URLs: {e}")
|
| 81 |
+
url_context = ""
|
|
|
|
| 82 |
|
| 83 |
+
try:
|
| 84 |
+
# Detect and download attachments
|
| 85 |
+
if self.debug:
|
| 86 |
+
print(f"3. Searching for images, audio or code attachments...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
attachment_name = question_data.get('file_name', '')
|
| 89 |
+
if self.debug:
|
| 90 |
+
print(f"Attachment name from question_data: '{attachment_name}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
image_files, audio_files, code_files = self._detect_and_process_direct_attachments(attachment_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
# Process attachments to get context
|
| 95 |
+
attachment_context = self._process_attachments(image_files, audio_files, code_files)
|
| 96 |
|
| 97 |
+
if self.debug and attachment_context:
|
| 98 |
+
print(f"Attachment context: {attachment_context[:200]}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
# Decide whether to search
|
| 101 |
+
if self._should_search(question_text, attachment_context, url_context):
|
| 102 |
if self.debug:
|
| 103 |
+
print("5. Using search-based approach")
|
| 104 |
+
answer = self._answer_with_search(question_text, attachment_context, url_context)
|
| 105 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
if self.debug:
|
| 107 |
+
print("5. Using LLM-only approach")
|
| 108 |
+
answer = self._answer_with_llm(question_text, attachment_context, url_context)
|
| 109 |
+
if self.debug:
|
| 110 |
+
print(f"LLM answer: {answer}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
# Note: We don't cleanup files here since they're not temporary files we created
|
| 113 |
+
# They are actual files in the working directory
|
| 114 |
|
| 115 |
+
except Exception as e:
|
| 116 |
if self.debug:
|
| 117 |
+
print(f"Error in attachment processing: {e}")
|
| 118 |
+
answer = f"Sorry, I encountered an error: {e}"
|
| 119 |
|
| 120 |
+
if self.debug:
|
| 121 |
+
print(f"6. Agent returning answer: {answer[:100]}...")
|
| 122 |
+
return answer
|
| 123 |
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
|
| 124 |
"""
|
| 125 |
Fetch questions from the API and cache them.
|